化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4003-4014.DOI: 10.11949/0438-1157.20220511
收稿日期:
2022-04-08
修回日期:
2022-05-12
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
潘艳秋
作者简介:
廖艺(1998—),女,硕士研究生,liaoyi@mail.dlut.edu.cn
基金资助:
Yi LIAO(), Yabin NIU, Yanqiu PAN(), Lu YU
Received:
2022-04-08
Revised:
2022-05-12
Online:
2022-09-05
Published:
2022-10-09
Contact:
Yanqiu PAN
摘要:
含复配表面活性剂的油田废水是一种多组分复杂体系,研究其中的分子作用关系有助于后续废水处理方案的确定。采用分子动力学(MD)模拟方法建立界面模型,通过定义表面活性剂的关键扭转点及相应的分子夹角、定义协同作用能,结合界面处的密度分布函数等性能模拟和界面张力测试结果,多角度分析两类阴阳离子表面活性剂复配对油水界面特性的影响。结果表明,与含单组分表面活性剂的油水体系相比,复配表面活性剂的相反电荷极性头基间静电吸引作用提高了油水界面稳定性;相较于十二烷基磺酸钠/十六烷基三甲基溴化铵(SLS/CTAB)复配体系,十二烷基硫酸钠/十六烷基三甲基溴化铵(SDS/CTAB)中分子间的协同作用可更好地提高体系的稳定性;当复配表面活性剂的配比为8/10~12/6时的油/水界面稳定效果较优、12/6时稳定性最好。研究结果可为石油开采及油水分离方案的确定提供依据。
中图分类号:
廖艺, 牛亚宾, 潘艳秋, 俞路. 复配表面活性剂对油水界面行为和性质影响的模拟研究[J]. 化工学报, 2022, 73(9): 4003-4014.
Yi LIAO, Yabin NIU, Yanqiu PAN, Lu YU. Modeling the effects of mixed surfactants on the behaviors and properties of the oil-water interface with molecular dynamics[J]. CIESC Journal, 2022, 73(9): 4003-4014.
体系分类 | n1(ASAA) | n2(CSAA) | 水 | 油 |
---|---|---|---|---|
单一体系(CSAA) | 0 | 16 | 2000 | 50 |
复配体系(Mix) | 4 | 13 | 2000 | 50 |
8 | 10 | 2000 | 50 | |
9 | 9 | 2000 | 50 | |
12 | 6 | 2000 | 50 | |
16 | 3 | 2000 | 50 | |
单一体系(ASAA) | 20 | 0 | 2000 | 50 |
纯油水体系(Oil/Water) | — | — | 2000 | 50 |
表1 模拟体系的分子个数
Table 1 The number of molecules in simulated system
体系分类 | n1(ASAA) | n2(CSAA) | 水 | 油 |
---|---|---|---|---|
单一体系(CSAA) | 0 | 16 | 2000 | 50 |
复配体系(Mix) | 4 | 13 | 2000 | 50 |
8 | 10 | 2000 | 50 | |
9 | 9 | 2000 | 50 | |
12 | 6 | 2000 | 50 | |
16 | 3 | 2000 | 50 | |
单一体系(ASAA) | 20 | 0 | 2000 | 50 |
纯油水体系(Oil/Water) | — | — | 2000 | 50 |
图3 SLS/CTAB体系YZ平面平衡图[SLS(紫色)、CTAB(蓝色);反离子为Na+(橙色)、Br-(绿色)]
Fig.3 Equilibrium diagram of SLS/CTAB system in YZ plane [SLS(purple), CTAB(blue); Anti-ion: Na+(orange), Br–(green)]
复配比 | ΔASDS/CTAB/nm2 | ΔASLS/CTAB/nm2 |
---|---|---|
4/13 | 0.42 | 0.38 |
8/10 | 0.52 | 0.48 |
9/9 | 0.45 | 0.38 |
12/6 | 0.43 | 0.37 |
16/3 | 0.26 | 0.23 |
表2 ASAA/CSAA体系的油水界面吸附截面积减小值ΔA
Table 2 Reduction of adsorption cross-sectional area at the oil-water interface of ASAA/CSAA system
复配比 | ΔASDS/CTAB/nm2 | ΔASLS/CTAB/nm2 |
---|---|---|
4/13 | 0.42 | 0.38 |
8/10 | 0.52 | 0.48 |
9/9 | 0.45 | 0.38 |
12/6 | 0.43 | 0.37 |
16/3 | 0.26 | 0.23 |
1 | Kamal M S, Hussein I A, Sultan A S. Review on surfactant flooding: phase behavior, retention, IFT, and field applications[J]. Energy & Fuels, 2017, 31(8): 7701-7720. |
2 | Sun Q, Zhang N, Fadlelmula M, et al. Structural regeneration of fracture-vug network in naturally fractured vuggy reservoirs[J]. Journal of Petroleum Science and Engineering, 2018, 165: 28-41. |
3 | La Mesa C, Risuleo G. Surface activity and efficiency of cat-anionic surfactant mixtures[J]. Frontiers in Chemistry, 2021, 9: 790873. |
4 | Guo H, Li Y Q, Kong D B, et al. Lessons learned from alkali/surfactant/polymer-flooding field tests in China[J]. SPE Reservoir Evaluation & Engineering, 2019, 22(1): 78-99. |
5 | 陈勇. 丙烯酰胺/甲基丙烯酰氧乙基三甲基氯化铵反相乳液聚合[D]. 杭州: 浙江大学, 2018. |
Chen Y. Inverse emulsion polymerization of acrylamide/methylacryloylxyethyl trimethylammonium chloride[D]. Hangzhou: Zhejiang University, 2018. | |
6 | 吴中杰, 刘则艳, 谢连科, 等. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72: 421-429. |
Wu Z J, Liu Z Y, Xie L K, et al. Preparation of hydrophilic poly(vinylidene fluoride) membrane for oil/water emulsion separation and heavy metal ions adsorption[J]. CIESC Journal, 2021, 72: 421-429. | |
7 | 黄翔峰, 程航, 陆丽君, 等. 利用稳定性分析仪研究化学破乳过程[J]. 化工进展, 2010, 29(5): 825-830. |
Huang X F, Cheng H, Lu L J, et al. Investigation of chemical demulsification process by stability analyzer[J]. Chemical Industry and Engineering Progress, 2010, 29(5): 825-830. | |
8 | Zhang G H, Chen Y, Sui X Y, et al. Nonionic surfactant stabilized polytetrafluoroethylene dispersion: effect of molecular structure and topology[J]. Journal of Molecular Liquids, 2022, 345: 116988. |
9 | Hjartnes T N, Mhatre S, Gao B C, et al. Demulsification of crude oil emulsions tracked by pulsed field gradient NMR (Ⅱ): Influence of chemical demulsifiers in external AC electric field[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586: 124188. |
10 | Sachin K M, Karpe S A, Singh M, et al. Self-assembly of sodium dodecylsulfate and dodecyltrimethylammonium bromide mixed surfactants with dyes in aqueous mixtures[J]. Royal Society Open Science, 2019, 6(3): 181979. |
11 | Okunade O A, Yekeen N, Padmanabhan E, et al. Shale core wettability alteration, foam and emulsion stabilization by surfactant: impact of surfactant concentration, rock surface roughness and nanoparticles[J]. Journal of Petroleum Science and Engineering, 2021, 207: 109139. |
12 | 单晨旭, 曹绪龙, 祝仰文, 等. 辛基酚聚氧乙烯醚磺酸盐界面行为的分子动力学模拟[J]. 化工学报, 2016, 67(4): 1416-1423. |
Shan C X, Cao X L, Zhu Y W, et al. Molecular dynamics simulation for interface behavior of octylphenol polyoxyethylene ether sulfonate[J]. CIESC Journal, 2016, 67(4): 1416-1423. | |
13 | 贾海鹏, 苏勋家, 侯根良, 等. 石墨烯/聚苯胺纳米复合材料界面相互作用的分子动力学模拟[J]. 化工学报, 2013, 64(5): 1862-1868. |
Jia H P, Su X J, Hou G L, et al. Molecular dynamics simulation of interactions on graphene/polyaniline nanocomposites interface[J]. CIESC Journal, 2013, 64(5): 1862-1868. | |
14 | Smit B, Hilbers P A J, Esselink K, et al. Computer simulations of a water/oil interface in the presence of micelles[J]. Nature, 1990, 348(6302): 624-625. |
15 | Smit B, Hilbers P A J, Esselink K, et al. Structure of a water/oil interface in the presence of micelles: a computer simulation study[J]. The Journal of Physical Chemistry, 1991, 95(16): 6361-6368. |
16 | Telo da Gama M M, Gubbins K E. Adsorption and orientation of amphiphilic molecules at a liquid-liquid interface[J]. Molecular Physics, 1986, 59(2): 227-239. |
17 | Ríos-López M, Mendez-Bermúdez J G, Vázquez-Sánchez M I, et al. Surface tension calculations of the cationic (CTAB) and the zwitterionic (SB3-12) surfactants using new force field models: a computational study[J]. Molecular Physics, 2019, 117(23/24): 3632-3641. |
18 | Jia H, Lian P, Leng X, et al. Mechanism studies on the application of the mixed cationic/anionic surfactant systems to enhance oil recovery[J]. Fuel, 2019, 258: 116156. |
19 | Li J, Han Y, Qu G M, et al. Molecular dynamics simulation of the aggregation behavior of N-Dodecyl-N, N-dimethyl-3-ammonio-1-propanesulfonate/sodium dodecyl benzene sulfonate surfactant mixed system at oil/water interface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 531: 73-80. |
20 | 丛玉凤, 廖克俭, 翟玉春. 分子模拟在SBS改性沥青中的应用[J]. 化工学报, 2005, 56(5): 769-773. |
Cong Y F, Liao K J, Zhai Y C. Application of molecular simulation for study of SBS modified asphalt[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(5): 769-773. | |
21 | Liu H J, Liu Y, Shang Y Z, et al. Molecular simulation and experimental studies on the interfacial properties of a mixed surfactant SDS/C4 mimBr[J]. Molecular Simulation, 2019, 45(3): 223-229. |
22 | Gan Y F, Cheng Q L, Wang Z H, et al. Molecular dynamics simulation of the microscopic mechanisms of the dissolution, diffusion and aggregation processes for waxy crystals in crude oil mixtures[J]. Journal of Petroleum Science and Engineering, 2019, 179: 56-69. |
23 | Dudek M, Kancir E, Øye G. Influence of the crude oil and water compositions on the quality of synthetic produced water[J]. Energy & Fuels, 2017, 31(4): 3708-3716. |
24 | 谷莹露, 刘会娥, 陈爽, 等. 油水比对阴离子型微乳液相行为的影响[J]. 化工学报, 2019, 70(7): 2626-2635. |
Gu Y L, Liu H E, Chen S, et al. Effect of oil/water ratio on phase behavior of anionic micro-emulsion[J]. CIESC Journal, 2019, 70(7): 2626-2635. | |
25 | 张雪芳, 潘艳秋, 陈鹏鹏, 等. 乳化剂对动态膜分离油水乳化液过程的影响[J]. 化工进展, 2019, 38(2): 790-797. |
Zhang X F, Pan Y Q, Chen P P, et al. Impact of emulsifier on separation of oil-in-water emulsion by dynamic membrane[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 790-797. | |
26 | 周家华, 崔英德. 表面活性剂HLB值的分析测定与计算(Ⅰ):HLB值的分析测定[J]. 精细石油化工, 2001, 18(2): 11-14. |
Zhou J H, Cui Y D. Measurement and calculation of HLB value of surfactants (Ⅰ): The measurement of HLB value[J]. Speciality Petrochemicals, 2001, 18(2): 11-14. | |
27 | Jang S S, Lin S T, Maiti P K, et al. Molecular dynamics study of a surfactant-mediated decane-water interface: effect of molecular architecture of alkyl benzene sulfonate[J]. The Journal of Physical Chemistry B, 2004, 108(32): 12130-12140. |
28 | Chanda J, Chakraborty S, Bandyopadhyay S. Monolayer of aerosol-OT surfactants adsorbed at the air/water interface: an atomistic computer simulation study[J]. The Journal of Physical Chemistry B, 2005, 109(1): 471-479. |
29 | 江蓉君, 罗健辉, 白瑞兵, 等. 多元体系油水界面上常见表面活性剂行为的分子动力学模拟[J]. 高等学校化学学报, 2017, 38(10): 1804-1812. |
Jiang R J, Luo J H, Bai R B, et al. Molecular dynamics simulation on behavior of common surfactants at the oil/water interface in complex systems[J]. Chemical Journal of Chinese Universities, 2017, 38(10): 1804-1812. | |
30 | Rehman N, Haq Z U, Ullah H, et al. Interactions of cationic surfactant cetyl-trimethyl ammonium bromide with ammonium nitrate: surface and thermodynamic studies[J]. Chinese Journal of Chemical Physics, 2021, 34(4): 480-486. |
31 | 崔正刚. 表面活性剂, 胶体与界面化学基础[M]. 北京: 化学工业出版社, 2003: 327-330. |
Cui Z G. Fundamentals of Surfactants, Colloids, and Interface Chemistry[M]. Beijing: Chemical Industry Press, 2003: 327-330. | |
32 | Liao X J, Wang Y Q, Liao Y, et al. Effects of different surfactant properties on anti-wetting behaviours of an omniphobic membrane in membrane distillation[J]. Journal of Membrane Science, 2021, 634: 119433. |
33 | Sohrabi B, Gharibi H, Tajik B, et al. Molecular interactions of cationic and anionic surfactants in mixed monolayers and aggregates[J]. The Journal of Physical Chemistry. B, 2008, 112(47): 14869-14876. |
34 | Chen L, Xiao J X, Ruan K, et al. Homogeneous solutions of equimolar mixed cationic-anionic surfactants[J]. Langmuir, 2002, 18(20): 7250-7252. |
35 | Tah B, Pal P, Mahato M, et al. Aggregation behavior of SDS/CTAB catanionic surfactant mixture in aqueous solution and at the air/water interface[J]. The Journal of Physical Chemistry. B, 2011, 115(26): 8493-8499. |
36 | Afrin T, Karobi S N, Rahman M M, et al. Water structure modification by sugars and its consequence on micellization behavior of cetyltrimethylammonium bromide in aqueous solution[J]. Journal of Solution Chemistry, 2013, 42(7): 1488-1499. |
37 | Sarangi D, Samantaray A C, Sahu R, et al. Interactions of cetyltrimethylammonium bromide with 1, 3-dioxolane in water: a study of viscosity and volumetric properties[J]. Asian Journal of Chemistry, 2019, 32(1): 53-58. |
38 | Bruździak P, Panuszko A, Kaczkowska E, et al. Taurine as a water structure breaker and protein stabilizer[J]. Amino Acids, 2018, 50(1): 125-140. |
39 | Alejandre J, Tildesley D J, Chapela G A. Molecular dynamics simulation of the orthobaric densities and surface tension of water[J]. The Journal of Chemical Physics, 1995, 102(11): 4574-4583. |
[1] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[2] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[3] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[4] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[5] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[6] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[7] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[8] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[9] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[10] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[11] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[12] | 顾浩, 张福建, 刘珍, 周文轩, 张鹏, 张忠强. 力电耦合作用下多孔石墨烯膜时间维度的脱盐性能及机理研究[J]. 化工学报, 2023, 74(5): 2067-2074. |
[13] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[14] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[15] | 陈余, 郑晓妍, 赵辉, 王二强, 李杰, 李春山. Pickering乳液催化非均相羟醛缩合反应研究[J]. 化工学报, 2023, 74(1): 449-458. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||