化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4133-4146.DOI: 10.11949/0438-1157.20220619
陈晨1(), 杨倩1(), 陈云2, 张睿1(), 刘冬1()
收稿日期:
2022-05-05
修回日期:
2022-07-04
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
张睿,刘冬
作者简介:
陈晨(1998—),女,博士研究生,chenchen_njust@126.com基金资助:
Chen CHEN1(), Qian YANG1(), Yun CHEN2, Rui ZHANG1(), Dong LIU1()
Received:
2022-05-05
Revised:
2022-07-04
Online:
2022-09-05
Published:
2022-10-09
Contact:
Rui ZHANG, Dong LIU
摘要:
燃煤有机污染物对人类健康和生态环境存在严重危害,而O2对火焰中有机产物的形成具有明显的调控作用。鉴于煤挥发分燃烧是燃煤过程中至关重要的一环,本文以煤热解气为燃料,通过数值模拟研究了氧化剂侧O2浓度对对冲扩散火焰中碳氢产物生成特性和机制的影响。结果表明,O2浓度升高促进了O和OH的生成,进而提高H浓度,突显了含H和OH参与的反应的重要性。此外,乙炔(C2H2)、丙炔(PC3H4)、炔丙基(C3H3)、乙烯基乙炔(C4H4)、苯(C6H6)和萘(C10H8)的浓度均增大。增加O2浓度促进了C2H2向PC3H4的转化,并使得C3H3更倾向于转化为丁二烯(C4H6),而富烯更倾向于通过苯基(C6H5)生成C6H6,因此C6H5作为C6H6前体的地位被加强。
中图分类号:
陈晨, 杨倩, 陈云, 张睿, 刘冬. 不同氧浓度下煤挥发分燃烧的化学动力学研究[J]. 化工学报, 2022, 73(9): 4133-4146.
Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations[J]. CIESC Journal, 2022, 73(9): 4133-4146.
煤样 | 工业分析/%(质量) | 元素分析/%(质量) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mar | Var | FCar | Aar | Cdaf | Hdaf | Odaf | Ndaf | Sdaf | ||
嘉兴煤种 | 5.02 | 25.31 | 58.60 | 11.07 | 76.12 | 4.18 | 18.20 | 0.97 | 0.53 |
表1 嘉兴煤种的工业分析和元素分析
Table 1 Proximate analysis and ultimate analysis of Jiaxing coal
煤样 | 工业分析/%(质量) | 元素分析/%(质量) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mar | Var | FCar | Aar | Cdaf | Hdaf | Odaf | Ndaf | Sdaf | ||
嘉兴煤种 | 5.02 | 25.31 | 58.60 | 11.07 | 76.12 | 4.18 | 18.20 | 0.97 | 0.53 |
热解温度 | 成分/% | |||||||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CH4 | C2H6 | C2H4 | C3H8 | C3H6 | |
600℃ | 18.74 | 19.55 | 24.21 | 29.49 | 3.46 | 2.45 | 0.79 | 1.31 |
表2 嘉兴煤种在600℃时的热解气成分
Table 2 Composition of coal pyrolysis gas at 600℃
热解温度 | 成分/% | |||||||
---|---|---|---|---|---|---|---|---|
H2 | CO | CO2 | CH4 | C2H6 | C2H4 | C3H8 | C3H6 | |
600℃ | 18.74 | 19.55 | 24.21 | 29.49 | 3.46 | 2.45 | 0.79 | 1.31 |
燃料、氧化剂流量/(ml/min) | 燃料浓度/% | 氧化剂侧O2浓度/% | 氧化剂侧N2浓度/% | 火焰拉伸率/s-1 | 化学计量混合分数 |
---|---|---|---|---|---|
400 | 100 | 21 | 79 | 69.54 | 0.139 |
400 | 100 | 25 | 75 | 69.62 | 0.161 |
400 | 100 | 30 | 70 | 69.73 | 0.186 |
表3 火焰工况
Table 3 Flame conditions
燃料、氧化剂流量/(ml/min) | 燃料浓度/% | 氧化剂侧O2浓度/% | 氧化剂侧N2浓度/% | 火焰拉伸率/s-1 | 化学计量混合分数 |
---|---|---|---|---|---|
400 | 100 | 21 | 79 | 69.54 | 0.139 |
400 | 100 | 25 | 75 | 69.62 | 0.161 |
400 | 100 | 30 | 70 | 69.73 | 0.186 |
1 | 郑楚光, 徐明厚, 张军营. 燃煤痕量元素的排放与控制[M]. 武汉: 湖北科学技术出版社, 2002. |
Zheng C G, Xu M H, Zhang J Y. Emissions and Control of Trace Elements from Coal Combustion[M]. Wuhan: Hubei Science and Technology Press, 2002. | |
2 | Zhao Y, Wang S X, Duan L, et al. Primary air pollutant emissions of coal-fired power plants in China: current status and future prediction[J]. Atmospheric Environment, 2008, 42(36): 8442-8452. |
3 | Meij R, Winkel H. The emissions of heavy metals and persistent organic pollutants from modern coal-fired power stations[J]. Atmospheric Environment, 2007, 41(40): 9262-9272. |
4 | Yi H H, Hao J M, Duan L, et al. Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China[J]. Fuel, 2008, 87(1011): 2050-2057. |
5 | Lighty J S, Veranth J M, Sarofim A F. Combustion aerosols: factors governing their size and composition and implications to human health[J]. Journal of the Air and Waste Management Association, 2000, 50(9): 1565-1618. |
6 | Yang G, Teague S, Pinkerton K, et al. Synthesis of an ultrafine iron and soot aerosol for the evaluation of particle toxicity[J]. Aerosol Science and Technology, 2001, 35(3): 759-766. |
7 | Kampa M, Castanas E. Human health effects of air pollution[J]. Environmental Pollution, 2008, 151(2): 362-367. |
8 | Mahler B J, Metre P C, Crane J L, et al. Coal-tar-based pavement sealcoat and PAHs: implications for the environment, human health, and stormwater management[J]. Environmental Science and Technology, 2012, 46(6): 3039-3045. |
9 | 徐静颖, 卓建坤, 姚强. 燃煤有机污染物生成排放特性与采样方法研究进展[J]. 化工学报, 2019, 70(8): 2823-2834. |
Xu J Y, Zhuo J K, Yao Q. Research progress on formation, emission characteristics and sampling methods of organic compounds from coal combustion[J]. CIESC Journal, 2019, 70(8): 2823-2834. | |
10 | Xu L, Yan F W, Zhou M X, et al. Experimental and soot modeling studies of ethylene counterflow diffusion flames: non-monotonic influence of the oxidizer composition on soot formation[J]. Combustion and Flame, 2018, 197: 304-318. |
11 | Wang Y, Park S, Sarathy S M, et al. A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames[J]. Combustion and Flame, 2018, 192: 71-85. |
12 | Olten N, Senkan S. Effect of oxygen addition on polycyclic aromatic hydrocarbon formation in 1,3-butadiene counter-flow diffusion flames[J]. Combustion and Flame, 2001, 125(12): 1032-1039. |
13 | Kalbhor A, Oijen J V. Effects of hydrogen enrichment and water vapour dilution on soot formation in laminar ethylene counterflow flames[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23653-23673. |
14 | Qiu L, Hua Y, Zhuang Y, et al. Numerical investigation into the decoupling effects of hydrogen blending on flame structure and soot formation in a laminar ethylene diffusion flame[J]. International Journal of Hydrogen Energy, 2020, 45(31): 15672-15682. |
15 | Sun Z W, Dally B, Alwahabi Z, et al. The effect of oxygen concentration in the co-flow of laminar ethylene diffusion flames[J]. Combustion and Flame, 2020, 211: 96-111. |
16 | Dai W, Yan F W, Xu L, et al. Effects of carbon monoxide addition on the sooting characteristics of ethylene and propane counterflow diffusion flames[J]. Fuel, 2020, 271: 117674. |
17 | Hwang J Y, Chung S H, Lee W. Effects of oxygen and propane addition on soot formation in counterflow ethylene flames and the role of C3 chemistry[J]. Symposium (International) on Combustion, 1998, 27(1): 1531-1538. |
18 | Leusden C P, Peters N. Experimental and numerical analysis of the influence of oxygen on soot formation in laminar counterflow flames of acetylene[J]. Proceedings of the Combustion Institute, 2000, 28(2): 2619-2625. |
19 | Nakamura Y, Ishii D, Satake S, et al. Sight-premixing effects on oxidation/formation of polycyclic aromatic hydrocarbon in counterflow flames[J]. Journal of Propulsion and Power, 2008, 24(2): 365-375. |
20 | Demarco R, Jerez A, Liu F S, et al. Modeling soot formation in laminar coflow ethylene inverse diffusion flames[J]. Combustion and Flame, 2021, 232: 111513. |
21 | Zhang K, Li Y, Wang Z H, et al. Pyrolysis behavior of a typical Chinese sub-bituminous Zhundong coal from moderate to high temperatures[J]. Fuel, 2016, 185: 701-708. |
22 | Li X H, Li B F, Fu D Q, et al. The interaction between the char solid heat carrier and the volatiles during low-rank coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 160-168. |
23 | 金夏虹. 低挥发分煤炭热解特性研究[D]. 杭州: 浙江大学, 2018. |
Jin X H. Study on pyrolysis characteristics of low volatile coal[D]. Hangzhou: Zhejiang University, 2018. | |
24 | 王建飞, 赵建涛, 李风海, 等. 烟煤与生物质快速共热解产物特性分析[J]. 燃料化学学报, 2015, 43(6): 641-648. |
Wang J F, Zhao J T, Li F H, et al. Product characteristics for fast co-pyrolysis of bituminous coal and biomass[J]. Journal of Fuel Chemistry and Technology, 2015, 43(6): 641-648. | |
25 | Chen C, Yang Q, Liu D, et al. Assessment on combustion chemistry of coal volatiles for various pyrolysis temperatures[J]. Journal of the Energy Institute, 2022, 104: 22-34. |
26 | Bagheri G, Ranzi E, Pelucchi M, et al. Comprehensive kinetic study of combustion technologies for low environmental impact: MILD and OXY-fuel combustion of methane[J]. Combustion and Flame, 2020, 212: 142-155. |
27 | Metcalfe W K, Burke S M, Ahmed S S, et al. A hierarchical and comparative kinetic modeling study of C1-C2 hydrocarbon and oxygenated fuels[J]. International Journal of Chemical Kinetics, 2013, 45(10): 638-675. |
28 | Burke S M, Burke U, Mc Donagh R, et al. An experimental and modeling study of propene oxidation (Ⅱ): Ignition delay time and flame speed measurements[J]. Combustion and Flame, 2015, 162(2): 296-314. |
29 | Ranzi E, Frassoldati A, Grana R, et al. Hierarchical and comparative kinetic modeling of laminar flame speeds of hydrocarbon and oxygenated fuels[J]. Progress in Energy and Combustion Science, 2012, 38(4): 468-501. |
30 | Ranzi E, Frassoldati A, Stagni A, et al. Reduced kinetic schemes of complex reaction systems: fossil and biomass-derived transportation fuels[J]. International Journal of Chemical Kinetics, 2014, 46(9): 512-542. |
31 | Lutz A E, Kee R J, Grcar J F, et al. OPPDIF: A Fortran program for computing opposed-flow diffusion flames[R]. Office of Scientific and Technical Information (OSTI), 1997. |
32 | Seshadri K, Williams F A. Laminar flow between parallel plates with injection of a reactant at high reynolds number[J]. International Journal of Heat and Mass Transfer, 1978, 21(2): 251-253. |
33 | Carbone F, Cattaneo F, Gomez A. Structure of incipiently sooting partially premixed ethylene counterflow flames[J]. Combustion and Flame, 2015, 162(11): 4138-4148. |
34 | Joo P H, Wang Y, Raj A, et al. Sooting limit in counterflow diffusion flames of ethylene/propane fuels and implication to threshold soot index[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1803-1809. |
35 | Yang J Z, Zhao L, Yuan W H, et al. Experimental and kinetic modeling investigation on laminar premixed benzene flames with various equivalence ratios[J]. Proceedings of the Combustion Institute, 2015, 35(1): 855-862. |
36 | Miller J A, Klippenstein S J, Georgievskii Y, et al. Reactions between resonance-stabilized radicals: propargyl + allyl[J]. The Journal of Physical Chemistry. A, 2010, 114(14): 4881-4890. |
37 | Senosiain J P, Klippenstein S J, Miller J A. The reaction of acetylene with hydroxyl radicals[J]. The Journal of Physical Chemistry. A, 2005, 109(27): 6045-6055. |
38 | Leonori F, Balucani N, Capozza G, et al. Dynamics of the O (3P) + C2H2 reaction from crossed molecular beam experiments with soft electron ionization detection[J]. Physical Chemistry Chemical Physics, 2014, 16(21): 10008-10022. |
39 | Liu D, Santner J, Togbé C, et al. Flame structure and kinetic studies of carbon dioxide-diluted dimethyl ether flames at reduced and elevated pressures[J]. Combustion and Flame, 2013, 160(12): 2654-2668. |
40 | Luo M Y, Liu D. Combustion characteristics of primary reference fuels with hydrogen addition[J]. International Journal of Hydrogen Energy, 2016, 41(26): 11471-11480. |
41 | Richter H, Howard J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways[J]. Progress in Energy and Combustion science, 2000, 26(46): 565-608. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[4] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[5] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[6] | 衣思敏, 马亚丽, 刘伟强, 张金帅, 岳岩, 郑强, 贾松岩, 李雪. 微晶菱镁矿蒸氨及水化动力学研究[J]. 化工学报, 2023, 74(4): 1578-1586. |
[7] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
[8] | 陈瑞哲, 程磊磊, 顾菁, 袁浩然, 陈勇. 纤维增强树脂复合材料化学回收技术研究进展[J]. 化工学报, 2023, 74(3): 981-994. |
[9] | 张娜, 潘鹤林, 牛波, 张亚运, 龙东辉. 酚醛树脂热裂解反应机理的密度泛函理论研究[J]. 化工学报, 2023, 74(2): 843-860. |
[10] | 唐茹意, 潘罕骞, 郑侠俊, 张广欣, 汪星平, 崔希利, 邢华斌. Z型全氟聚醚的结构表征[J]. 化工学报, 2023, 74(1): 479-486. |
[11] | 郝泽光, 张乾, 高增林, 张宏文, 彭泽宇, 杨凯, 梁丽彤, 黄伟. 生物质与催化裂化油浆共热解协同作用研究[J]. 化工学报, 2022, 73(9): 4070-4078. |
[12] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
[13] | 唐恺鸿, 何晓峰, 徐桂秋, 于洋, 刘啸凤, 葛铁军, 张爱玲. 酚醛泡沫的燃烧行为及阻燃研究进展[J]. 化工学报, 2022, 73(8): 3483-3500. |
[14] | 肖皓宇, 杨海平, 张雄, 陈应泉, 王贤华, 陈汉平. 塑料催化热解制备高附加值产品的研究进展[J]. 化工学报, 2022, 73(8): 3461-3471. |
[15] | 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 94
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||