化工学报 ›› 2022, Vol. 73 ›› Issue (9): 4163-4172.DOI: 10.11949/0438-1157.20220552
杜若晗1(), 逄博1, 王宁1, 崔福军2(), 郭明钢2, 贺高红1,2, 吴雪梅1()
收稿日期:
2022-04-19
修回日期:
2022-06-07
出版日期:
2022-09-05
发布日期:
2022-10-09
通讯作者:
崔福军,吴雪梅
作者简介:
杜若晗(1997—),女,硕士研究生,drh_dut@163.com
基金资助:
Ruohan DU1(), Bo PANG1, Ning WANG1, Fujun CUI2(), Minggang GUO2, Gaohong HE1,2, Xuemei WU1()
Received:
2022-04-19
Revised:
2022-06-07
Online:
2022-09-05
Published:
2022-10-09
Contact:
Fujun CUI, Xuemei WU
摘要:
设计了应用于全钒液流电池的尺寸筛分效应共价有机框架/聚醚砜(COF/PES)复合膜,利用纳米片的有序交错堆叠在聚醚砜支撑层上构建了具有均匀埃米级离子传输通道的连续COF分离层。连续COF层的规整刚性骨架赋予了膜极低的溶胀比,有序的埃米级孔道(有效孔径约为0.6 nm)对氢/钒离子具有精确的尺寸筛分作用。COF/PES筛分复合膜的钒渗透率仅有0.61×10-8 cm-2·s-1,质子/钒离子选择性为Nafion 212的4.0倍。电流密度为80 mA·cm-2下复合膜的能量效率达到82.9%,优于Nafion 212(81.2%)。100 mA·cm-2下的长循环测试中,复合膜电池容量保持率相比于Nafion 212电池提高了16.2%,表明连续COF/PES筛分复合膜在全钒液流电池中具有广阔的应用前景。
中图分类号:
杜若晗, 逄博, 王宁, 崔福军, 郭明钢, 贺高红, 吴雪梅. 连续共价有机框架筛分复合膜及全钒电池性能[J]. 化工学报, 2022, 73(9): 4163-4172.
Ruohan DU, Bo PANG, Ning WANG, Fujun CUI, Minggang GUO, Gaohong HE, Xuemei WU. Continuous covalent organic framework composite membrane with size-sieving effect for vanadium flow battery[J]. CIESC Journal, 2022, 73(9): 4163-4172.
膜 | 悬浮液用量/ml | 分离层厚度/μm |
---|---|---|
COF-VF 0.9 | 50 | 0.9 |
COF-VF 2.1 | 100 | 2.1 |
COF-VF 6.0 | 200 | 6.0 |
表1 COF-VF膜的悬浮液用量与分离层厚度
Table 1 Dosage of suspension and separating layer thickness of COF-VF membranes
膜 | 悬浮液用量/ml | 分离层厚度/μm |
---|---|---|
COF-VF 0.9 | 50 | 0.9 |
COF-VF 2.1 | 100 | 2.1 |
COF-VF 6.0 | 200 | 6.0 |
1 | Park M, Ryu J, Cho J. Nanostructured electrocatalysts for all-vanadium redox flow batteries[J]. Chemistry, an Asian Journal, 2015, 10(10): 2096-2110. |
2 | Wang K, Liu L, Xi J Y, et al. Reduction of capacity decay in vanadium flow batteries by an electrolyte-reflow method[J]. Journal of Power Sources, 2017, 338: 17-25. |
3 | Zeng Y K, Zhou X L, An L, et al. A high-performance flow-field structured iron-chromium redox flow battery[J]. Journal of Power Sources, 2016, 324: 738-744. |
4 | Wu M C, Zhao T S, Zhang R H, et al. Carbonized tubular polypyrrole with a high activity for the Br2/Br- redox reaction in zinc-bromine flow batteries[J]. Electrochimica Acta, 2018, 284: 569-576. |
5 | Tan R, Wang A Q, Malpass-Evans R, et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage[J]. Nature Materials, 2020, 19(2): 195-202. |
6 | Gu S, Gong K, Yan E Z, et al. A multiple ion-exchange membrane design for redox flow batteries[J]. Energy Environ. Sci., 2014, 7(9): 2986-2998. |
7 | Mauritz K A, Moore R B. State of understanding of nafion[J]. Chemical Reviews, 2004, 104(10): 4535-4585. |
8 | Yuan Z Z, Li X F, Hu J B, et al. Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium[J]. Phys. Chem. Chem. Phys., 2014, 16(37): 19841-19847. |
9 | Yuan Z Z, Li X F, Zhao Y Y, et al. Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery[J]. ACS Applied Materials & Interfaces, 2015, 7(34): 19446-19454. |
10 | Zhang N, Yang B Y, Huo J, et al. Hydration structures of vanadium/oxovanadium cations in the presence of sulfuric acid: a molecular dynamics simulation study[J]. Chemical Engineering Science, 2019, 195: 683-692. |
11 | Mai Z S, Zhang H M, Li X F, et al. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application[J]. Journal of Power Sources, 2011, 196: 482-487. |
12 | 柳东东, 林茂才, 管涛, 等. 全钒氧化还原液流电池Nafion/SiO2复合膜的研究[J]. 电化学, 2010, 16(4): 455-459. |
Liu D D, Lin M C, Guan T, et al. Research on Nafion/SiO2 composite membrane in all vanadium redox flow battery[J]. Electrochemistry, 2010, 16(4): 455-459. | |
13 | Teng X G, Zhao Y T, Xi J Y, et al. Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery[J]. Journal of Power Sources, 2009, 189: 1240-1246. |
14 | Ye J Y, Zhao X L, Ma Y L, et al. Hybrid membranes dispersed with superhydrophilic TiO2 nanotubes toward ultra-stable and high-performance vanadium redox flow batteries[J]. Advanced Energy Materials, 2020, 10: 1904041. |
15 | Hossain S I, Aziz M A, Shanmugam S. Ultrahigh ion-selective and durable nafion-NdZr composite layer membranes for all-vanadium redox flow batteries[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(4): 1998-2007. |
16 | Lu W J, Yuan Z Z, Ming R L, et al. Solvent-induced rearrangement of ion-transport channels: a way to create advanced porous membranes for vanadium flow batteries[J]. Advanced Functional Materials, 2017, 27: 1604587. |
17 | Lu W J, Yuan Z Z, Zhao Y Y, et al. Advanced porous PBI membranes with tunable performance induced by the polymer-solvent interaction for flow battery application[J]. Energy Storage Materials, 2018, 10: 40-47. |
18 | Yang R D, Cao Z S, Yang S W, et al. Colloidal silicalite-nafion composite ion exchange membrane for vanadium redox-flow battery[J]. Journal of Membrane Science, 2015, 484: 1-9. |
19 | Liu S, Sang X X, Wang L H, et al. Incorporation of metal-organic framework in polymer membrane enhances vanadium flow battery performance[J]. Electrochimica Acta, 2017, 257: 243-249. |
20 | Pang B, Cui F J, Chen W T, et al. Construction of hierarchical proton sieving-conductive channels in sulfated UIO-66 grafted polybenzimidazole ion conductive membrane for vanadium redox flow battery[J]. Journal of Power Sources, 2022, 526: 231132. |
21 | Su L, Zhang D S, Peng S S, et al. Orientated graphene oxide/Nafion ultra-thin layer coated composite membranes for vanadium redox flow battery[J]. International Journal of Hydrogen Energy, 2017, 42(34): 21806-21816. |
22 | Kim S, Choi J, Choi C, et al. Pore-size-tuned graphene oxide frameworks as ion-selective and protective layers on hydrocarbon membranes for vanadium redox-flow batteries[J]. Nano Letters, 2018, 18(6): 3962-3968. |
23 | Geng K Y, He T, Liu R Y, et al. Covalent organic frameworks: design, synthesis, and functions[J]. Chemical Reviews, 2020, 120(16): 8814-8933. |
24 | Côté A P, Benin A I, Ockwig N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
25 | Huang N, Chen X, Krishna R, et al. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization[J]. Angewandte Chemie (International Ed. in English), 2015, 54(10): 2986-2990. |
26 | 刘秀英, 孟令广, 于景新, 等. 共价有机骨架材料的CO2捕获性能研究[J]. 化工新型材料, 2019, 47(1): 235-238, 242. |
Liu X Y, Meng L G, Yu J X, et al. Study on carbon dioxide capture of covalent organic frameworks[J]. New Chemical Materials, 2019, 47(1): 235-238, 242. | |
27 | Lin S, Diercks C S, Zhang Y B, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO₂ reduction in water[J]. Science, 2015, 349(6253): 1208-1213. |
28 | Gan Z J, Lu S L, Qiu L, et al. Fine tuning of supported covalent organic framework with molecular active sites loaded as efficient electrocatalyst for water oxidation[J]. Chemical Engineering Journal, 2021, 415: 127850. |
29 | Pan F S, Guo W X, Su Y L, et al. Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation[J]. Separation and Purification Technology, 2019, 215: 582-589. |
30 | Fu J R, Das S, Xing G L, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2 [J]. Journal of the American Chemical Society, 2016, 138(24): 7673-7680. |
31 | Xu F, Xu H, Chen X, et al. Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage[J]. Angewandte Chemie (International Ed. in English), 2015, 54(23): 6814-6818. |
32 | Yin Z Y, Geng H B, Yang P F, et al. Improved proton conduction of sulfonated poly (ether ether ketone) membrane by sulfonated covalent organic framework nanosheets[J]. International Journal of Hydrogen Energy, 2021, 46(52): 26550-26559. |
33 | Cao Y, Wu H, Li G, et al. Ion selective covalent organic framework enabling enhanced electrochemical performance of lithium-sulfur batteries[J]. Nano Letters, 2021, 21(7): 2997-3006. |
34 | Di M T, Hu L, Gao L, et al. Covalent organic framework (COF) constructed proton permselective membranes for acid supporting redox flow batteries[J]. Chemical Engineering Journal, 2020, 399: 125833. |
35 | Wang R, Wei M J, Wang Y. Secondary growth of covalent organic frameworks (COFs) on porous substrates for fast desalination[J]. Journal of Membrane Science, 2020, 604: 118090. |
36 | Liu J T, Han G, Zhao D L, et al. Self-standing and flexible covalent organic framework (COF) membranes for molecular separation[J]. Science Advances, 2020, 6(41): eabb1110. |
37 | Li Y, Wu Q X, Guo X H, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving[J]. Nature Communications, 2020, 11: 599. |
38 | Yang X Q, Zhu H J, Jiang F J, et al. Notably enhanced proton conductivity by thermally-induced phase-separation transition of Nafion/poly(vinylidene fluoride) blend membranes[J]. Journal of Power Sources, 2020, 473: 228586. |
39 | Peng S S, Wu X M, Yan X M, et al. Polybenzimidazole membranes with nanophase-separated structure induced by non-ionic hydrophilic side chains for vanadium flow batteries[J]. Journal of Materials Chemistry A, 2018, 6(9): 3895-3905. |
40 | Mohammadi T, Kazacos M S. Evaluation of the chemical stability of some membranes in vanadium solution[J]. Journal of Applied Electrochemistry, 1997, 27(2): 153-160. |
41 | Pan F S, Guo W X, Su Y L, et al. Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation[J]. Separation and Purification Technology, 2019, 215: 582-589. |
42 | Kim S, Yuk S, Kim H G, et al. A hydrocarbon/Nafion bilayer membrane with a mechanical nano-fastener for vanadium redox flow batteries [J]. Journal of Materials Chemistry A, 2017, 5(33): 17279-17286. |
43 | He X Y, Yang Y, Wu H, et al. De novo design of covalent organic framework membranes toward ultrafast anion transport[J]. Advanced Materials (Deerfield Beach, Fla.), 2020, 32(36): 2001284. |
44 | Tao S S, Zhai L P, Dinga Wonanke A D, et al. Confining H3PO4 network in covalent organic frameworks enables proton super flow[J]. Nature Communications, 2020, 11: 1981. |
[1] | 胡超, 董玉明, 张伟, 张红玲, 周鹏, 徐红彬. 浓硫酸活化五氧化二钒制备高浓度全钒液流电池正极电解液[J]. 化工学报, 2023, 74(S1): 338-345. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[4] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[10] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[11] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[12] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[13] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[14] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[15] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||