1 |
Lees E W, Mowbray B A W, Salvatore D A, et al. Linking gas diffusion electrode composition to CO2 reduction in a flow cell[J]. Journal of Materials Chemistry A, 2020, 8(37): 19493-19501.
|
2 |
Kuhl K P, Cave E R, Abram D N, et al. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050-7059.
|
3 |
Stephanie N, Erlend B, Scott Soren B, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chemical Reviews, 2019, 119(12): 7610-7672.
|
4 |
Ren S X, Joulié D, Salvatore D A, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell[J]. Science, 2019, 365: 367-369.
|
5 |
Kim B, Hillman F, Ariyoshi M, et al. Effects of composition of the micro porous layer and the substrate on performance in the electrochemical reduction of CO2 to CO[J]. Journal of Power Sources, 2016, 312: 192-198.
|
6 |
Del Castillo A, Alvarez-Guerra M, Solla-Gullón J, et al. Sn nanoparticles on gas diffusion electrodes: synthesis, characterization and use for continuous CO2 electroreduction to formate[J]. Journal of CO2 Utilization, 2017, 18: 222-228.
|
7 |
Weekes D M, Salvatore D A, Reyes A, et al. Electrolytic CO2 reduction in a flow cell[J]. Accounts of Chemical Research, 2018, 51(4): 910-918.
|
8 |
Welch A J, Dunn E, DuChene J S, et al. Bicarbonate or carbonate processes for coupling carbon dioxide capture and electrochemical conversion[J]. ACS Energy Letters, 2020, 5(3): 940-945.
|
9 |
Boot-Handford M E, Abanades J C, Anthony E J, et al. Carbon capture and storage update[J]. Energy & Environmental Science, 2014, 7(1): 130-189.
|
10 |
Wang Y, Zhao L, Otto A, et al. A review of post-combustion CO2 capture technologies from coal-fired power plants[J]. Energy Procedia, 2017, 114: 650-665.
|
11 |
Li T F, Lees E W, Goldman M, et al. Electrolytic conversion of bicarbonate into CO in a flow cell[J]. Joule, 2019, 3(6): 1487-1497.
|
12 |
Lee G, Li Y C, Kim J Y, et al. Electrochemical upgrade of CO2 from amine capture solution[J]. Nature Energy, 2021, 6(1): 46-53.
|
13 |
Lees E W, Goldman M, Fink A G, et al. Electrodes designed for converting bicarbonate into CO[J]. ACS Energy Letters, 2020, 5(7): 2165-2173.
|
14 |
Mahyoub S A, Qaraah F A, Chen C Z, et al. An overview on the recent developments of Ag-based electrodes in the electrochemical reduction of CO2 to CO[J]. Sustainable Energy & Fuels, 2020, 4(1): 50-67.
|
15 |
Zhang Z, Wen G B, Luo D, et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction[J]. Journal of the American Chemical Society, 2021, 143(18): 6855-6864.
|
16 |
Qin L B, Sun F, Ma X S, et al. Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: structural analysis and electrocatalytic performance toward CO2 reduction[J]. Angewandte Chemie (International Ed. in English), 2021, 60(50): 26136-26141.
|
17 |
Zhang M L, Wu T S, Hong S, et al. Efficient electrochemical reduction of CO2 by Ni-N catalysts with tunable performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(17): 15030-15035.
|
18 |
Yang H Z, Shang L, Zhang Q H, et al. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts[J]. Nature Communications, 2019, 10: 4585.
|
19 |
Jia M W, Choi C, Wu T S, et al. Carbon-supported Ni nanoparticles for efficient CO2 electroreduction[J]. Chemical Science, 2018, 9(47): 8775-8780.
|
20 |
Pan F P, Deng W, Justiniano C, et al. Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction[J]. Applied Catalysis B: Environmental, 2018, 226: 463-472.
|
21 |
Ma S S, Su P P, Huang W J, et al. Atomic Ni species anchored N-doped carbon hollow spheres as nanoreactors for efficient electrochemical CO2 reduction[J]. ChemCatChem, 2019, 11(24): 6092-6098.
|
22 |
Liang S Y, Huang L, Gao Y S, et al. Electrochemical reduction of CO2 to CO over transition metal/N-doped carbon catalysts: the active sites and reaction mechanism[J]. Advanced Science, 2021, 8(24): 2102886
|
23 |
Sun Z, Liu Z, Han B, et al. Fabrication of ruthenium-carbon nanotube nanocomposites in supercritical water[J]. Advanced Materials, 2005, 17(7): 928-932.
|
24 |
Yang H B, Hung S F, Liu S, et al. Atomically dispersed Ni(Ⅰ) as the active site for electrochemical CO2 reduction[J]. Nature Energy, 2018, 3(2): 140-147.
|
25 |
Junge Puring K, Siegmund D, Timm J, et al. Electrochemical CO2 reduction: tailoring catalyst layers in gas diffusion electrodes[J]. Advanced Sustainable Systems, 2021, 5(1): 2000088.
|
26 |
Zhang Z S, Lees E W, Habibzadeh F, et al. Porous metal electrodes enable efficient electrolysis of carbon capture solutions[J]. Energy & Environmental Science, 2022, 15(2): 705-713.
|
27 |
Yue P T, Xiong K R, Ma L, et al. MOF-derived Ni single-atom catalyst with abundant mesopores for efficient mass transport in electrolytic bicarbonate conversion[J]. ACS Applied Materials & Interfaces, 2022, 14(49): 54840-54847.
|
28 |
Larrea C, Torres D, Avilés-Moreno J R, et al. Multi-parameter study of CO2 electrochemical reduction from concentrated bicarbonate feed[J]. Journal of CO2 Utilization, 2022, 57: 101878.
|
29 |
Zhang W, Huang C Q, Xiao Q, et al. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction[J]. Journal of the American Chemical Society, 2020, 142(26): 11417-11427.
|
30 |
Wang Q N, Dong H, Yu H, et al. Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer[J]. Journal of Power Sources, 2015, 279: 1-5.
|
31 |
Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energy & Environmental Science, 2019, 12(5): 1442-1453.
|