1 |
Xu R N, Wang G Y, Jiang P X. Spray cooling on enhanced surfaces: a review of the progress and mechanisms[J]. Journal of Electronic Packaging, 2022, 144(1): 010802.
|
2 |
沈胜强, 周士鹤, 牟兴森, 等. 大型低温多效蒸发海水淡化装置传热过程热力损失分析[J]. 化工学报, 2014, 65(9): 3366-3374.
|
|
Shen S Q, Zhou S H, Mu X S, et al. Analysis of thermodynamic losses of heat transfer process in large-scale LT-MED desalination plant[J]. CIESC Journal, 2014, 65(9): 3366-3374.
|
3 |
Tijing L D, Woo Y C, Choi J S, et al. Fouling and its control in membrane distillation—a review[J]. Journal of Membrane Science, 2015, 475: 215-244.
|
4 |
Garcia-Cordero J L, Fan Z H. Sessile droplets for chemical and biological assays[J]. Lab on a Chip, 2017, 17(13): 2150-2166.
|
5 |
Hernandez-Perez R, Fan Z H, Garcia-Cordero J L. Evaporation-driven bioassays in suspended droplets[J]. Analytical Chemistry, 2016, 88(14): 7312-7317.
|
6 |
Wong T S, Chen T H, Shen X Y, et al. Nanochromatography driven by the coffee ring effect[J]. Analytical Chemistry, 2011, 83(6): 1871-1873.
|
7 |
Jeong H, Han C, Cho S, et al. Analysis of extracellular vesicles using coffee ring[J]. ACS Applied Materials & Interfaces, 2018, 10(27): 22877-22882.
|
8 |
Deegan R D, Bakajin O, Dupont T F, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature, 1997, 389(6653): 827-829.
|
9 |
Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions[J]. The Journal of Physical Chemistry. B, 2006, 110(14): 7090-7094.
|
10 |
Hu H, Larson R G. Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet[J]. Langmuir, 2005, 21(9): 3972-3980.
|
11 |
Hu H, Larson R G. Analysis of the microfluid flow in an evaporating sessile droplet[J]. Langmuir, 2005, 21(9): 3963-3971.
|
12 |
Hu H, Larson R G. Evaporation of a sessile droplet on a substrate[J]. The Journal of Physical Chemistry B, 2002, 106(6): 1334-1344.
|
13 |
Lee S J, Hong J, Choi Y S. Evaporation-induced flows inside a confined droplet of diluted saline solution[J]. Langmuir, 2014, 30(26): 7710-7715.
|
14 |
Mampallil D, Eral H B. A review on suppression and utilization of the coffee-ring effect[J]. Advances in Colloid and Interface Science, 2018, 252: 38-54.
|
15 |
Kaneda M, Takao Y, Jun F K. Thermal and solutal effects on convection inside a polymer solution droplet on a substrate[J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4448-4457.
|
16 |
Misyura S Y, Volkov R S, Filatova A S. Interaction of two drops at different temperatures: the role of thermocapillary convection and surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559: 275-283.
|
17 |
Strizhak P A, Volkov R S, Misyura S Y, et al. The role of convection in gas and liquid phases at droplet evaporation[J]. International Journal of Thermal Sciences, 2018, 134: 421-439.
|
18 |
Wang Z Y, Karapetsas G, Valluri P, et al. Dynamics of hygroscopic aqueous solution droplets undergoing evaporation or vapour absorption[J]. Journal of Fluid Mechanics, 2021, 912: A2.
|
19 |
金铭, 胡定华, 李强, 等. Al2O3纳米流体液滴蒸发特性的数值模拟研究[J]. 化工学报, 2019, 70(11): 4199-4206.
|
|
Jin M, Hu D H, Li Q, et al. Simulation of sessile nanofluid droplet evaporation character[J]. CIESC Journal, 2019, 70(11): 4199-4206.
|
20 |
Kim J H, Park S B, Kim J H, et al. Polymer transports inside evaporating water droplets at various substrate temperatures[J]. The Journal of Physical Chemistry C, 2011, 115(31): 15375-15383.
|
21 |
Teng L, Wang W F, Huang X, et al. Evaporation of sessile droplet on surfaces with various wettability[J]. Chemical Engineering Science, 2023, 268: 118413.
|
22 |
Li Y X, Lv P Y, Diddens C, et al. Evaporation-triggered segregation of sessile binary droplets[J]. Physical Review Letters, 2018, 120(22): 224501.
|
23 |
van Gaalen R T, Wijshoff H M A, Kuerten J G M, et al. Competition between thermal and surfactant-induced Marangoni flow in evaporating sessile droplets[J]. Journal of Colloid and Interface Science, 2022, 622: 892-903.
|
24 |
Kumar V, Dash S. Patterns during evaporative crystallization of a saline droplet[J]. Langmuir, 2022, 38(33): 10265-10273.
|
25 |
金艳艳, 单彦广. 水-乙醇二元混合固着液滴的蒸发特性[J]. 化工学报, 2018, 69(7): 2908-2915.
|
|
Jin Y Y, Shan Y G. Evaporation characteristics of sessile ethanol-water mixture droplets[J]. CIESC Journal, 2018, 69(7): 2908-2915.
|
26 |
Gavrilina A A, Barash L Y. Modeling unsteady Bénard-marangoni instabilities in drying volatile droplets on a heated substrate[J]. Journal of Experimental and Theoretical Physics, 2021, 132(2): 302-312.
|
27 |
Efstratiou M, Christy J, Sefiane K. Crystallization-driven flows within evaporating aqueous saline droplets[J]. Langmuir, 2020, 36(18): 4995-5002.
|
28 |
Li Y X, Diddens C, Lv P Y, et al. Gravitational effect in evaporating binary microdroplets[J]. Physical Review Letters, 2019, 122(11): 114501.
|
29 |
Savino R, Monti R. Buoyancy and surface-tension-driven convection in hanging-drop protein crystallizer[J]. Journal of Crystal Growth, 1996, 165(3): 308-318.
|
30 |
A M J Edwards, S Atkinson P, S Cheung C, et al. Density-driven flows in evaporating binary liquid droplets[J]. Physical Review Letters, 2018, 121(18): 184501.
|
31 |
Kang K H, Lim H C, Lee H W, et al. Evaporation-induced saline Rayleigh convection inside a colloidal droplet[J]. Physics of Fluids, 2013, 25(4): 042001.
|
32 |
Pradhan T K, Panigrahi P K. Evaporation induced natural convection inside a droplet of aqueous solution placed on a superhydrophobic surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 530: 1-12.
|
33 |
Diddens C, Li Y X, Lohse D. Competing Marangoni and Rayleigh convection in evaporating binary droplets[J]. Journal of Fluid Mechanics, 2021, 914: A23.
|
34 |
Yuan Z J, Li Z T, Wu M Y, et al. Shaping droplet by semiflexible micro crystallizer for high quality crystal harvest[J]. Journal of Colloid and Interface Science, 2023, 629: 334-345.
|
35 |
Han M G, Li J, He G H, et al. Tailored 3D printed micro-crystallization chip for versatile and high-efficiency droplet evaporative crystallization[J]. Lab on a Chip, 2019, 19(5): 767-777.
|
36 |
Misyura S Y, Strizhak P A, Volkov R S, et al. The influence of the wall microtexture on functional properties and heat transfer[J]. Journal of Molecular Liquids, 2019, 294: 111670.
|
37 |
Ristenpart W D, Kim P G, Domingues C, et al. Influence of substrate conductivity on circulation reversal in evaporating drops[J]. Physical Review Letters, 2007, 99(23): 234502.
|