1 |
Wei M, Zhang F, Wang W, et al. 3D direct writing fabrication of electrodes for electrochemical storage devices[J]. Journal of Power Sources, 2017, 354: 134-147.
|
2 |
Goodenough J B. Electrochemical energy storage in a sustainable modern society[J]. Energy & Environmental Science, 2014, 7(1): 14-18.
|
3 |
Whittingham M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104(10): 4271-4301.
|
4 |
Zhong C, Liu B, Ding J, et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries[J]. Nature Energy, 2020, 5(6): 440-449.
|
5 |
Ji J, Wan H Z, Zhang B, et al. Co2+/3+/4+-regulated electron state of Mn-O for superb aqueous zinc-manganese oxide batteries[J]. Advanced Energy Materials, 2021, 11(6): 2003203.
|
6 |
Tagliaferri S, Panagiotopoulos A, Mattevi C. Direct ink writing of energy materials[J]. Materials Advances, 2021, 2(2): 540-563.
|
7 |
Wu K, Huang J H, Yi J, et al. Recent advances in polymer electrolytes for zinc ion batteries: mechanisms, properties, and perspectives[J]. Advanced Energy Materials, 2020, 10(12): 1903977.
|
8 |
Luo Z X, Zeng J, Liu Z, et al. Carbon-coated hydrated vanadium dioxide for high-performance aqueous zinc-ion batteries[J]. Journal of Alloys and Compounds, 2022, 906: 164388.
|
9 |
Wei T S, Ahn B Y, Grotto J, et al. 3D printing of customized Li-ion batteries with thick electrodes[J]. Advanced Materials, 2018, 30(16): 1703027.
|
10 |
Chang P, Mei H, Zhou S X, et al. 3D printed electrochemical energy storage devices[J]. Journal of Materials Chemistry A, 2019, 7(9): 4230-4258.
|
11 |
Amato D N, Amato D V, Sandoz M, et al. Programmable porous polymers via direct bubble writing with surfactant-free inks[J]. ACS Applied Materials & Interfaces, 2020, 12(37): 42048-42055.
|
12 |
Tian X C, Wang T, Ma H, et al. A universal strategy towards 3D printable nanomaterial inks for superior cellular high-loading battery electrodes[J]. Journal of Materials Chemistry A, 2021, 9(29): 16086-16092.
|
13 |
李文利, 周宏志, 刘卫卫, 等. 光固化3D打印陶瓷浆料及流变性研究进展[J]. 材料工程, 2022, 50(7): 40-50.
|
|
Li W L, Zhou H Z, Liu W W, et al. Research progress in ceramic slurries and rheology viaphotopolymerization-based 3D printing[J]. Journal of Materials Engineering, 2022, 50(7): 40-50.
|
14 |
Bae C J, Ramachandran A, Halloran J W. Quantifying particle segregation in sequential layers fabricated by additive manufacturing[J]. Journal of the European Ceramic Society, 2018, 38(11): 4082-4088.
|
15 |
Bae C J, Halloran J W. Concentrated suspension-based additive manufacturing-viscosity, packing density, and segregation[J]. Journal of the European Ceramic Society, 2019, 39(14): 4299-4306.
|
16 |
Zakeri S, Vippola M, Levänen E. A comprehensive review of the photopolymerization of ceramic resins used in stereolithography[J]. Additive Manufacturing, 2020, 35: 101177.
|
17 |
Dou R, Tang W Z, Hu K X, et al. Ceramic paste for space stereolithography 3D printing technology in microgravity environment[J]. Journal of the European Ceramic Society, 2022, 42(9): 3968-3975.
|
18 |
Praveen S, Santhoshkumar P, Joe Y C, et al. 3D-printed architecture of Li-ion batteries and its applications to smart wearable electronic devices[J]. Applied Materials Today, 2020, 20: 100688.
|
19 |
Wang J W, Sun Q, Gao X J, et al. Toward high areal energy and power density electrode for Li-ion batteries via optimized 3D printing approach[J]. ACS Applied Materials & Interfaces, 2018, 10(46): 39794-39801.
|
20 |
Shen C L, Wang T, Xu X, et al. 3D printed cellular cathodes with hierarchical pores and high mass loading for Li-SeS2 battery[J]. Electrochimica Acta, 2020, 349: 136331.
|
21 |
Janssen R, Scheppokat S, Claussen N. Tailor-made ceramic-based components—advantages by reactive processing and advanced shaping techniques[J]. Journal of the European Ceramic Society, 2008, 28(7): 1369-1379.
|
22 |
Zhang Y N, Liu Y P, Liu Z H, et al. MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries[J]. Journal of Energy Chemistry, 2022, 64: 23-32.
|
23 |
Cao X W, Xu Y T, Yang B, et al. In-situ Co-precipitated α-MnO2@2-methylimidazole cathode material for high performance zinc ion batteries[J]. Journal of Alloys and Compounds, 2022, 896: 162785.
|
24 |
Wang X, Li Y D. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods[J]. Chemistry, 2003, 9(1): 300-306.
|
25 |
左文婧, 屈银虎, 祁攀虎, 等. 3D打印锂离子电池正极的制备及性能[J]. 工程科学学报, 2020, 42(3): 358-364.
|
|
Zuo W J, Qu Y H, Qi P H, et al. Preparation and performance of 3D-printed positive electrode for lithium-ion battery[J]. Chinese Journal of Engineering, 2020, 42(3): 358-364.
|
26 |
王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21.
|
|
Wang Y B, Zhao J P. 3D printing of flexible electrodes towards wearable lithium ion battery[J]. Journal of Materials Engineering, 2018, 46(3): 13-21.
|
27 |
Friedrich L, Begley M. Printing direction dependent microstructures in direct ink writing[J]. Additive Manufacturing, 2020, 34: 101192.
|
28 |
Sydney Gladman A, Matsumoto E A, Nuzzo R G, et al. Biomimetic 4D printing[J]. Nature Materials, 2016, 15(4): 413-418.
|
29 |
Kou T Y, Wang S W, Shi R P, et al. Water splitting: periodic porous 3D electrodes mitigate gas bubble traffic during alkaline water electrolysis at high current densities[J]. Advanced Energy Materials, 2020, 10(46): 2070189.
|
30 |
Bu X M, Mao Z Y, Bu Y, et al. Remarkable gas bubble transport driven by capillary pressure in 3D printing-enabled anisotropic structures for efficient hydrogen evolution electrocatalysts[J]. Applied Catalysis B: Environmental, 2023, 320: 121995.
|
31 |
Smith P T, Basu A, Saha A, et al. Chemical modification and printability of shear-thinning hydrogel inks for direct-write 3D printing[J]. Polymer, 2018, 152: 42-50.
|
32 |
Wilt J K, Gilmer D, Kim S, et al. Direct ink writing techniques for in situ gelation and solidification[J]. MRS Communications, 2021, 11(2): 106-121.
|