化工学报 ›› 2023, Vol. 74 ›› Issue (2): 756-765.DOI: 10.11949/0438-1157.20220998
饶纤纤1,2(), 杜淼3(), 单国荣1,2(), 潘鹏举1,2
收稿日期:
2022-07-15
修回日期:
2022-10-04
出版日期:
2023-02-05
发布日期:
2023-03-21
通讯作者:
杜淼,单国荣
作者简介:
饶纤纤(1998—),女,硕士研究生,raoxianxian@zju.edu.cn
基金资助:
Xianxian RAO1,2(), Miao DU3(), Guorong SHAN1,2(), Pengju PAN1,2
Received:
2022-07-15
Revised:
2022-10-04
Online:
2023-02-05
Published:
2023-03-21
Contact:
Miao DU, Guorong SHAN
摘要:
为考察金属盐凝固剂对丁基橡胶(isobutylene isoprene rubber,IIR)硫化行为的影响,采用流变仪研究了搅拌破乳及11种金属盐破乳后IIR的硫化历程,并分析了其硫化动力学。研究发现金属盐的阳离子及阴离子种类对硫化过程均有显著影响。与传统Ca2+凝固剂相比,过渡金属离子Cu2+、Zn2+破乳会延长焦烧期及正硫化时间,降低硫化表观活化能,硫化膜储能模量较高。与搅拌破乳相比,主族金属离子Ca2、Mg2+、Al3+破乳对硫化过程影响较小。阴离子Cl-及
中图分类号:
饶纤纤, 杜淼, 单国荣, 潘鹏举. 不同金属盐破乳对丁基橡胶硫化行为的影响[J]. 化工学报, 2023, 74(2): 756-765.
Xianxian RAO, Miao DU, Guorong SHAN, Pengju PAN. Effect of different metal salt demulsifiers on vulcanization behavior of isobutylene isoprene rubber[J]. CIESC Journal, 2023, 74(2): 756-765.
Types of ingredients | phr of ingredients |
---|---|
IIR latex (solid content) | 100.0 |
S | 1.5 |
ZBEC | 1.5 |
ZMBT | 1.5 |
ZnO | 5.0 |
stearic acid | 2.0 |
4020 | 1.5 |
表1 IIR硫化体系配方
Table 1 Formula of IIR vulcanization system
Types of ingredients | phr of ingredients |
---|---|
IIR latex (solid content) | 100.0 |
S | 1.5 |
ZBEC | 1.5 |
ZMBT | 1.5 |
ZnO | 5.0 |
stearic acid | 2.0 |
4020 | 1.5 |
Metallic salts | t10/min | t90/min | v×105/ (mol/cm3) | Gel fraction/% | |||
---|---|---|---|---|---|---|---|
stirring | 116.09 | 16.80 | 99.29 | 2.0 | 22.0 | 2.30±0.60 | 89.06 |
MgCl2 | 93.32 | 13.47 | 79.85 | 2.5 | 30.0 | 4.31±0.50 | 91.15 |
CaCl2 | 113.96 | 20.27 | 93.69 | 3.0 | 19.0 | 2.85±0.80 | 90.41 |
CuCl2 | 89.09 | 14.31 | 74.78 | 5.5 | 24.0 | 1.15±0.70 | 92.20 |
ZnCl2 | 119.54 | 13.40 | 106.14 | 7.0 | 38.0 | 3.75±0.80 | 90.39 |
AlCl3 | 106.09 | 14.46 | 91.63 | 3.0 | 21.0 | 1.55±0.40 | 90.39 |
MgSO4 | 99.03 | 18.40 | 80.63 | 3.0 | 14.0 | 1.52±0.40 | 90.09 |
CuSO4 | 145.44 | 24.65 | 120.79 | 5.5 | 27.0 | 2.56±0.60 | 89.71 |
Mg(OAc)2 | 91.98 | 15.22 | 76.76 | 2.5 | 17.0 | 3.99±1.20 | 90.96 |
Cu(OAc)2 | 125.45 | 12.14 | 113.31 | 6.0 | 26.0 | 2.62±0.50 | 91.96 |
Zn(OAc)2 | 155.59 | 18.13 | 137.46 | 3.5 | 30.0 | 3.27±1.20 | 88.50 |
Ca(NO3)2 | 81.96 | 13.60 | 68.36 | 2.0 | 27.0 | 4.29±1.0 | 92.00 |
表2 不同金属盐破乳IIR硫化体系的Gmax'、Gmin'、Gmax'-Gmin'、t10、t90、v和凝胶分率(160℃)
Table 2 Gmax',Gmin',Gmax'-Gmin', t10, t90, v and gel fraction of IIR after demulsification with different metallic salt solutions (160℃)
Metallic salts | t10/min | t90/min | v×105/ (mol/cm3) | Gel fraction/% | |||
---|---|---|---|---|---|---|---|
stirring | 116.09 | 16.80 | 99.29 | 2.0 | 22.0 | 2.30±0.60 | 89.06 |
MgCl2 | 93.32 | 13.47 | 79.85 | 2.5 | 30.0 | 4.31±0.50 | 91.15 |
CaCl2 | 113.96 | 20.27 | 93.69 | 3.0 | 19.0 | 2.85±0.80 | 90.41 |
CuCl2 | 89.09 | 14.31 | 74.78 | 5.5 | 24.0 | 1.15±0.70 | 92.20 |
ZnCl2 | 119.54 | 13.40 | 106.14 | 7.0 | 38.0 | 3.75±0.80 | 90.39 |
AlCl3 | 106.09 | 14.46 | 91.63 | 3.0 | 21.0 | 1.55±0.40 | 90.39 |
MgSO4 | 99.03 | 18.40 | 80.63 | 3.0 | 14.0 | 1.52±0.40 | 90.09 |
CuSO4 | 145.44 | 24.65 | 120.79 | 5.5 | 27.0 | 2.56±0.60 | 89.71 |
Mg(OAc)2 | 91.98 | 15.22 | 76.76 | 2.5 | 17.0 | 3.99±1.20 | 90.96 |
Cu(OAc)2 | 125.45 | 12.14 | 113.31 | 6.0 | 26.0 | 2.62±0.50 | 91.96 |
Zn(OAc)2 | 155.59 | 18.13 | 137.46 | 3.5 | 30.0 | 3.27±1.20 | 88.50 |
Ca(NO3)2 | 81.96 | 13.60 | 68.36 | 2.0 | 27.0 | 4.29±1.0 | 92.00 |
Metallic salt | K/(10-3 s-1) | Ea/(kJ/mol) | R2 | |||||
---|---|---|---|---|---|---|---|---|
160℃ | R2 | 170℃ | R2 | 180℃ | R2 | |||
stirring | 1.550±0.034 | 0.9575 | 5.820±0.150 | 0.9831 | 11.190±0.260 | 0.9925 | 161.7±29.4 | 0.9679 |
MgCl2 | 1.370±0.002 | 0.9997 | 3.230±0.008 | 0.9997 | 7.410±0.041 | 0.9994 | 137.7±0.5 | 1.0000 |
CaCl2 | 2.270±0.009 | 0.9988 | 5.210±0.057 | 0.9965 | 10.280±0.065 | 0.9994 | 123.4±5.5 | 0.9980 |
CuCl2 | 1.820±0.006 | 0.9991 | 4.000±0.026 | 0.9983 | 8.960±0.110 | 0.9975 | 130.0±2.6 | 0.9996 |
ZnCl2 | 1.150±0.004 | 0.9985 | 2.300±0.014 | 0.9974 | 4.840±0.049 | 0.9966 | 95.4±16.2 | 0.9721 |
AlCl3 | 2.120±0.004 | 0.9998 | 4.180±0.011 | 0.9997 | 9.210±0.128 | 0.9967 | 119.8±6.8 | 0.9968 |
MgSO4 | 3.250±0.004 | 0.9991 | 7.700±0.018 | 0.9999 | 15.160±0.320 | 0.9955 | 125.7±7.1 | 0.9968 |
CuSO4 | 1.540±0.006 | 0.9983 | 3.290±0.023 | 0.9976 | 6.940±0.085 | 0.9969 | 122.8±1.0 | 0.9999 |
Mg(OAc)2 | 2.320±0.026 | 0.9914 | 4.790±0.055 | 0.9962 | 10.140±0.092 | 0.9989 | 120.3±2.7 | 0.9995 |
Cu(OAc)2 | 1.710±0.004 | 0.9995 | 3.550±0.011 | 0.9996 | 6.920±0.041 | 0.9993 | 114.1±1.5 | 0.9998 |
Zn(OAc)2 | 1.310±0.004 | 0.9990 | 2.600±0.010 | 0.9991 | 5.320±0.037 | 0.9986 | 114.3±2.9 | 0.9994 |
Ca(NO3)2 | 1.320±0.020 | 0.9757 | 4.090±0.092 | 0.9813 | 11.830±0.084 | 0.9994 | 179.0±0.9 | 1.0000 |
表3 不同金属盐破乳后IIR体系的硫化反应表观速率常数和表观活化能
Table 3 Vulcanization rate constant and vulcanization activation energy of IIR after demulsification with different metallic salt solutions
Metallic salt | K/(10-3 s-1) | Ea/(kJ/mol) | R2 | |||||
---|---|---|---|---|---|---|---|---|
160℃ | R2 | 170℃ | R2 | 180℃ | R2 | |||
stirring | 1.550±0.034 | 0.9575 | 5.820±0.150 | 0.9831 | 11.190±0.260 | 0.9925 | 161.7±29.4 | 0.9679 |
MgCl2 | 1.370±0.002 | 0.9997 | 3.230±0.008 | 0.9997 | 7.410±0.041 | 0.9994 | 137.7±0.5 | 1.0000 |
CaCl2 | 2.270±0.009 | 0.9988 | 5.210±0.057 | 0.9965 | 10.280±0.065 | 0.9994 | 123.4±5.5 | 0.9980 |
CuCl2 | 1.820±0.006 | 0.9991 | 4.000±0.026 | 0.9983 | 8.960±0.110 | 0.9975 | 130.0±2.6 | 0.9996 |
ZnCl2 | 1.150±0.004 | 0.9985 | 2.300±0.014 | 0.9974 | 4.840±0.049 | 0.9966 | 95.4±16.2 | 0.9721 |
AlCl3 | 2.120±0.004 | 0.9998 | 4.180±0.011 | 0.9997 | 9.210±0.128 | 0.9967 | 119.8±6.8 | 0.9968 |
MgSO4 | 3.250±0.004 | 0.9991 | 7.700±0.018 | 0.9999 | 15.160±0.320 | 0.9955 | 125.7±7.1 | 0.9968 |
CuSO4 | 1.540±0.006 | 0.9983 | 3.290±0.023 | 0.9976 | 6.940±0.085 | 0.9969 | 122.8±1.0 | 0.9999 |
Mg(OAc)2 | 2.320±0.026 | 0.9914 | 4.790±0.055 | 0.9962 | 10.140±0.092 | 0.9989 | 120.3±2.7 | 0.9995 |
Cu(OAc)2 | 1.710±0.004 | 0.9995 | 3.550±0.011 | 0.9996 | 6.920±0.041 | 0.9993 | 114.1±1.5 | 0.9998 |
Zn(OAc)2 | 1.310±0.004 | 0.9990 | 2.600±0.010 | 0.9991 | 5.320±0.037 | 0.9986 | 114.3±2.9 | 0.9994 |
Ca(NO3)2 | 1.320±0.020 | 0.9757 | 4.090±0.092 | 0.9813 | 11.830±0.084 | 0.9994 | 179.0±0.9 | 1.0000 |
1 | 林浩, 周元林, 付万发, 等. 溴化丁基胶乳乳化工艺研究[J]. 橡胶工业, 2011, 58(1): 43-46. |
Lin H, Zhou Y L, Fu W F, et al. Emulsification process for preparation of bromobutyl rubber latex[J]. China Rubber Industry, 2011, 58(1): 43-46. | |
2 | 褚衡, 王春娥, 李纯清. 丁基再生胶胶乳的研究[J]. 湖北工业大学学报, 2008, 23(1): 73-75. |
Chu H, Wang C E, Li C Q. The preparation and study of latex of reclaimed IIR[J]. Journal of Hubei University of Technology, 2008, 23(1): 73-75. | |
3 | 付万发, 周元林, 付万贵, 等. 溶液乳化法制备溴化丁基胶乳的工艺研究[J]. 化工新型材料, 2008, 36(6): 92-93. |
Fu W F, Zhou Y L, Fu W G, et al. Study on preparation of the bromobutyl rubber latex by solution emulsification[J]. New Chemical Materials, 2008, 36(6): 92-93. | |
4 | 李志锋, 吕明哲, 李永振, 等. 天然胶乳手套与合成胶乳手套的发展[J]. 橡胶工业, 2021, 68(2): 146-153. |
Li Z F, Lyu M Z, Li Y Z, et al. Development of natural latex gloves and synthetic latex gloves[J]. China Rubber Industry, 2021, 68(2): 146-153. | |
5 | 梁星宇. 丁基橡胶应用技术[M]. 北京: 化学工业出版社, 2004: 243. |
Liang X Y. Butyl Rubber Application Technology[M]. Beijing: Chemical Industry Press, 2004: 243. | |
6 | 王丽丽, 吴明生. 天然胶乳最佳成膜工艺条件的研究[J]. 橡胶工业, 2019, 66(10): 767-771. |
Wang L L, Wu M S. Study on optimum film forming conditions of natural latex[J]. China Rubber Industry, 2019, 66(10): 767-771. | |
7 | 丁丽, 陈美, 刘培铭, 等. 天然胶乳凝固工艺的研究进展[J]. 热带农业科学, 2007, 27(2): 67-71. |
Ding L, Chen M, Liu P M, et al. Development of natural rubber latex coagulation technologies[J]. Chinese Journal of Tropical Agriculture, 2007, 27(2): 67-71. | |
8 | 李志锋, 吕明哲, 杨子明, 等. 天然胶乳制品凝固剂浸渍法与凝固剂体系的应用和改进[J]. 橡胶工业, 2020, 67(5): 395-399. |
Li Z F, Lyu M Z, Yang Z M, et al. Coagulant impregnation method and application and improvement of coagulant system of natural latex products[J]. China Rubber Industry, 2020, 67(5): 395-399. | |
9 | 胡一麟, 张国强. 胶乳制品加工基础[M]. 北京: 化学工业出版社, 1986: 142. |
Hu Y L, Zhang G Q. Basics of Processing of Latex Products[M]. Beijing: Chemical Industry Press, 1986: 142. | |
10 | 魏邦柱. 胶乳·乳液应用技术[M]. 北京: 化学工业出版社, 2003: 676-689. |
Wei B Z. Application Technology of Latex and Emulsion[M]. Beijing: Chemical Industry Press, 2003: 676-689. | |
11 | 何忠建, 方海旋, 符新. 表面活性剂和CaCl2作凝固剂凝固天然胶乳的研究[J]. 化学工程师, 2008, 22(3): 62-64. |
He Z J, Fang H X, Fu X. Study on the coagulation of natural rubber using surfactant and calcium as the coagulant[J]. Chemical Engineer, 2008, 22(3): 62-64. | |
12 | 谢长洪, 方海旋, 符新. 凝固方法对胶清橡胶力学性能的影响[J]. 化学工程师, 2008, 22(3): 4-6. |
Xie C H, Fang H X, Fu X. The effect of different coagulation methods on the mechanical properties of skin rubber[J]. Chemical Engineer, 2008, 22(3): 4-6. | |
13 | 侯婷婷, 李程鹏, 钟杰平, 等. 氯化钙凝固天然橡胶的热分析研究[J]. 广东化工, 2006, 33(11): 26-28. |
Hou T T, Li C P, Zhong J P, et al. Thermal analysis of nature rubber preparated with calcium chloride coagulating technology[J]. Guangdong Chemical Industry, 2006, 33(11): 26-28. | |
14 | 黄向前, 杨全运, 胡绍森, 等. 天然橡胶凝块与集中加工技术的开发[J]. 热带农业科学, 2004, 24(6): 1-7, 35. |
Huang X Q, Yang Q Y, Hu S S, et al. Development of natural rubber processing technology[J]. Chinese Journal of Tropical Agriculture, 2004, 24(6): 1-7, 35. | |
15 | Wang L M, Du M, Shan G R, et al. Low heat generation from organic zinc as a curing activator in rubber and rubber composites under large strain[J]. Nano Select, 2022, 3(5): 965-976. |
16 | Sreethu T K, Naskar K. Zinc oxide with various surface characteristics and its role on mechanical properties, cure-characteristics, and morphological analysis of natural rubber/carbon black composites[J]. Journal of Polymer Research, 2021, 28(5): 1-14. |
17 | 王丽明, 杜淼, 单国荣, 等. 低生热橡胶复合体系的研究进展[J]. 化工学报, 2021, 72(2): 863-875. |
Wang L M, Du M, Shan G R, et al. Research progress of rubber composite with low dynamic heat generation[J]. CIESC Journal, 2021, 72(2): 863-875. | |
18 | Coran A Y. Chemistry of the vulcanization and protection of elastomers: a review of the achievements[J]. Journal of Applied Polymer Science, 2003, 87(1): 24-30. |
19 | Morgan B, McGill W J. Benzothiazole-accelerated sulfur vulcanization(Ⅳ): Effect of ZnO and bis(2-mercaptobenzothiazole)zinc(Ⅱ) on 2-bisbenzothiazole-2, 2′-polysulfide formation in 2-bisbenzothiazole-2, 2′-disulfide and 2-bisbenzothiazole-2, 2-disulfide/sulfur[J]. Journal of Applied Polymer Science, 2000, 76(9): 1405-1412. |
20 | Ducháček V, Kuta A, Pr̆ibyl P. Efficiency of metal activators of accelerated sulfur vulcanization[J]. Journal of Applied Polymer Science, 1993, 47(4): 743-746. |
21 | 何映平. 天然橡胶加工学[M]. 海口: 海南出版社, 2007: 137. |
He Y P. Natural Rubber Processing[M]. Haikou: Hainan Press, 2007: 137. | |
22 | 邱于献. 天然胶乳铝盐凝固的研究[D]. 海口: 海南大学, 2013. |
Qiu Y X. Study on natural rubber latex coagulated by aluminum salt[D]. Haikou: Hainan University, 2013. | |
23 | Flory P J, Rehner J. Statistical mechanics of cross-linked polymer networks(Ⅱ): Swelling[J]. The Journal of Chemical Physics, 1943, 11(11): 521-526. |
24 | Zellers E T, Anna D H, Sulewski R, et al. Improved methods for the determination of Hansen's solubility parameters and the estimation of solvent uptake for lightly crosslinked polymers[J]. Journal of Applied Polymer Science, 1996, 62(12): 2081-2096. |
25 | 侯亚合, 游长江. 橡胶硫化[M]. 北京: 化学工业出版社, 2013: 89-91. |
Hou Y H, You C J. Rubber Vulcanization[M]. Beijing: Chemical Industry Press, 2013: 89-91. | |
26 | Kader M A, Nah C. Influence of clay on the vulcanization kinetics of fluoroelastomer nanocomposites[J]. Polymer, 2004, 45(7): 2237-2247. |
27 | Hong I K, Lee S. Cure kinetics and modeling the reaction of silicone rubber[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(1): 42-47. |
28 | Nieuwenhuizen P J, Ehlers A W, Haasnoot J G, et al. The mechanism of zinc ( Ⅱ ) -dithiocarbamate-accelerated vulcanization uncovered; theoretical and experimental evidence[J]. Journal of the American Chemical Society, 1999, 121(1): 163-168. |
29 | Nieuwenhuizen P J. Zinc accelerator complexes[J]. Applied Catalysis A: General, 2001, 207(1/2): 55-68. |
30 | Nieuwenhuizen P J, Timal S, Haasnoot J G, et al. Zinc(Ⅱ)-catalyzed disproportionation in rubber: the mechanism of sulfur vulcanization revisited[J]. Chemistry - A European Journal, 1997, 3(11): 1846-1851. |
31 | Nieuwenhuizen P J, Ehlers A W, Hofstraat J W, et al. The first theoretical and experimental proof of polythiocarbamatozinc(Ⅱ): Complexes, catalysts for sulfur vulcanization[J]. Chemistry - A European Journal, 1998, 4(9): 1816-1821. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[8] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[9] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[10] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[11] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[12] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[13] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[14] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[15] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||