化工学报 ›› 2023, Vol. 74 ›› Issue (6): 2477-2485.DOI: 10.11949/0438-1157.20230403
朱兴驰1,2(), 郭志远1,2, 纪志永1,2(), 汪婧1,2, 张盼盼1,2, 刘杰1,2, 赵颖颖1,2, 袁俊生1,2
收稿日期:
2023-04-26
修回日期:
2023-06-06
出版日期:
2023-06-05
发布日期:
2023-07-27
通讯作者:
纪志永
作者简介:
朱兴驰(1997—),男,硕士研究生,1345367322@qq.com
基金资助:
Xingchi ZHU1,2(), Zhiyuan GUO1,2, Zhiyong JI1,2(), Jing WANG1,2, Panpan ZHANG1,2, Jie LIU1,2, Yingying ZHAO1,2, Junsheng YUAN1,2
Received:
2023-04-26
Revised:
2023-06-06
Online:
2023-06-05
Published:
2023-07-27
Contact:
Zhiyong JI
摘要:
选择性电渗析(selective electrodialysis,S-ED)技术是目前实现高镁锂比卤水锂资源提取的有效手段。通过建立一种二维传质稳态模型,以离子通量分布为研究对象,探究体系离子强度、外加电压和通道流速对镁锂分离的影响。结果表明:体系离子强度和通道流速的增大与外加电压的减小均对镁锂分离具有促进作用。在体系离子强度为1378 mol/m3,外加电压值为0.8 V,通道流速为5.7 cm/s的条件下,锂镁分离系数为2.31。研究结果可为推广S-ED过程数值模拟提供理论指导和数据参考。
中图分类号:
朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485.
Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process[J]. CIESC Journal, 2023, 74(6): 2477-2485.
参数 | 数值 |
---|---|
通道宽度W_ch/mm | 0.9 |
通道长度 L/mm | 300 |
阳膜宽度 W_cm/mm | 0.15 |
阴膜宽度 W_am/mm | 0.13 |
电解质电位 Vtot/V | 0.2~1 |
入口流速 Vin/(cm/s) | 1.7~9.7 |
温度 T/K | 298.15 |
LiCl浓度 cLiCl/(mmol/L) | 145~435 |
MgCl2浓度 | 411~1233 |
NaCl浓度 cNaCl/(mmol/L) | 500~1500 |
Li+扩散系数 DLi/(m2/s) | 1.03 × 10-9 |
Mg2+扩散系数 DMg/(m2/s) | 7.06 × 10-10 |
Na+扩散系数 DNa/(m2/s) | 1.33 × 10-9 |
Cl-扩散系数 DCl/(m2/s) | 2.03 × 10-9 |
阳/阴膜浓度 Cmem/(mol/m3) | 1000 |
阳/阴膜含水量 ϕw | 0.25 |
表1 模型参数
Table 1 Parameter of model
参数 | 数值 |
---|---|
通道宽度W_ch/mm | 0.9 |
通道长度 L/mm | 300 |
阳膜宽度 W_cm/mm | 0.15 |
阴膜宽度 W_am/mm | 0.13 |
电解质电位 Vtot/V | 0.2~1 |
入口流速 Vin/(cm/s) | 1.7~9.7 |
温度 T/K | 298.15 |
LiCl浓度 cLiCl/(mmol/L) | 145~435 |
MgCl2浓度 | 411~1233 |
NaCl浓度 cNaCl/(mmol/L) | 500~1500 |
Li+扩散系数 DLi/(m2/s) | 1.03 × 10-9 |
Mg2+扩散系数 DMg/(m2/s) | 7.06 × 10-10 |
Na+扩散系数 DNa/(m2/s) | 1.33 × 10-9 |
Cl-扩散系数 DCl/(m2/s) | 2.03 × 10-9 |
阳/阴膜浓度 Cmem/(mol/m3) | 1000 |
阳/阴膜含水量 ϕw | 0.25 |
组成离子 | 进料浓度/(mol/m3) | 组成离子 | 进料浓度/(mol/m3) | ||||
---|---|---|---|---|---|---|---|
Is1=1378 mol/m3 | Is1=4134 mol/m3 | Is2=500 mol/m3 | Is2=1500 mol/m3 | ||||
淡化室 | Li+ | 145 | 435 | 浓缩室 | Na+ | 500 | 1500 |
Mg2+ | 411 | 1233 | |||||
Cl- | 967 | 2901 | Cl- | 500 | 1500 |
表2 进料浓度和离子强度
Table 2 Feed concentration and ionic strength
组成离子 | 进料浓度/(mol/m3) | 组成离子 | 进料浓度/(mol/m3) | ||||
---|---|---|---|---|---|---|---|
Is1=1378 mol/m3 | Is1=4134 mol/m3 | Is2=500 mol/m3 | Is2=1500 mol/m3 | ||||
淡化室 | Li+ | 145 | 435 | 浓缩室 | Na+ | 500 | 1500 |
Mg2+ | 411 | 1233 | |||||
Cl- | 967 | 2901 | Cl- | 500 | 1500 |
1 | Zhang C, Liu B B, Li N, et al. Resource nexus for sustainable development: status quoand prospect[J]. Chinese Science Bulletin, 2021, 66(26): 3426-3440. |
2 | Wang P, Wang H M, Chen W Q, et al. Carbon neutrality needs a circular metal-energy nexus[J]. Fundamental Research, 2022, 2(3): 392-395. |
3 | 赵连征, 汪鹏, 汤林彬, 等. 中国锂元素动态物质流及关键驱动因素分析[J]. 科技导报, 2022, 40(21): 100-109. |
Zhao L Z, Wang P, Tang L B, et al. Dynamic material flow and key driving factors of lithium in China[J]. Science & Technology Review, 2022, 40(21): 100-109. | |
4 | 于建国, 孙庆, 裘晟波, 等. 支撑国家新能源战略发展的锂资源开发[J]. 无机盐工业, 2023, 55(1): 1-14. |
Yu J G, Sun Q, Qiu S B, et al. Lithium resources development supporting national new energy strategy development[J]. Inorganic Chemicals Industry, 2023, 55(1): 1-14. | |
5 | 杨卉芃, 柳林, 丁国峰. 全球锂矿资源现状及发展趋势[J]. 矿产保护与利用, 2019, 39(5): 26-40. |
Yang H P, Liu L, Ding G F. Present situation and development trend of lithium resources in the world[J]. Conservation and Utilization of Mineral Resources, 2019, 39(5): 26-40. | |
6 | 李康, 王建平. 中国锂资源开发利用现状及对策建议[J]. 资源与产业, 2016, 18(1): 82-86. |
Li K, Wang J P. China's lithium resource development actuality and approaches[J]. Resources & Industries, 2016, 18(1): 82-86. | |
7 | 孙淑英, 叶帆, 宋兴福, 等. 盐湖卤水萃取提锂及其机理研究[J]. 无机化学学报, 2011, 27(3): 439-444. |
Sun S Y, Ye F, Song X F, et al. Extraction of lithium from salt lake brine and mechanism research[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(3): 439-444. | |
8 | Chen Q B, Ji Z Y, Liu J, et al. Development of recovering lithium from brines by selective-electrodialysis: effect of coexisting cations on the migration of lithium[J]. Journal of Membrane Science, 2018, 548: 408-420. |
9 | 乜贞, 伍倩, 丁涛, 等. 中国盐湖卤水提锂产业化技术研究进展[J]. 无机盐工业, 2022, 54(10): 1-12. |
Nie Z, Wu Q, Ding T, et al. Research progress on industrialization technology of lithium extraction from salt lake brine in China[J]. Inorganic Chemicals Industry, 2022, 54(10): 1-12. | |
10 | Guo Z Y, Ji Z Y, Chen Q B, et al. Prefractionation of LiCl from concentrated seawater/salt lake brines by electrodialysis with monovalent selective ion exchange membranes[J]. Journal of Cleaner Production, 2018, 193: 338-350. |
11 | 马珍. 盐湖锂资源高效分离提取技术研究进展[J]. 无机盐工业, 2022, 54(10): 22-29. |
Ma Z. Research progress on efficient separation and extraction technology of lithium resources in salt lakes[J]. Inorganic Chemicals Industry, 2022, 54(10): 22-29. | |
12 | Xiao G P, Tong K F, Sun S Y, et al. Preparation of spherical PVC-MnO2 ion-sieve and its lithium adsorption property[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(11): 2385-2394. |
13 | Lee J, Yu S H, Kim C, et al. Highly selective lithium recovery from brine using a λ-MnO2-Ag battery[J]. Physical Chemistry Chemical Physics, 2013, 15(20): 7690-7695. |
14 | Dunn J B, Gaines L, Sullivan J, et al. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries[J]. Environmental Science & Technology, 2012, 46(22): 12704-12710. |
15 | Khalil A, Mohammed S, Hashaikeh R, et al. Lithium recovery from brine: recent developments and challenges[J]. Desalination, 2022, 528: 115611. |
16 | Zhao W Y, Zhou M M, Yan B H, et al. Waste conversion and resource recovery from wastewater by ion exchange membranes: state-of-the-art and perspective[J]. Industrial & Engineering Chemistry Research, 2018, 57(18): 6025-6039. |
17 | van der Bruggen B, Koninckx A, Vandecasteele C. Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration[J]. Water Research, 2004, 38(5): 1347-1353. |
18 | Zhao L M, Chen Q B, Ji Z Y, et al. Separating and recovering lithium from brines using selective-electrodialysis: sensitivity to temperature[J]. Chemical Engineering Research and Design, 2018, 140: 116-127. |
19 | Castañeda L F, Nava J L. Simulations of single-phase flow in an up-flow electrochemical reactor with parallel plate electrodes in a serpentine array[J]. Journal of Electroanalytical Chemistry, 2019, 832: 31-39. |
20 | Rivero E P, Ortega A, Cruz-Díaz M R, et al. Modelling the transport of ions and electrochemical regeneration of the resin in a hybrid ion exchange/electrodialysis process for As(Ⅴ) removal[J]. Journal of Applied Electrochemistry, 2018, 48(6): 597-610. |
21 | Lu J, Wang Y X, Lu Y Y, et al. Numerical simulation of the electrodeionization (EDI) process for producing ultrapure water[J]. Electrochimica Acta, 2010, 55(24): 7188-7198. |
22 | Tado K, Sakai F, Sano Y, et al. An analysis on ion transport process in electrodialysis desalination[J]. Desalination, 2016, 378: 60-66. |
23 | Tedesco M, Hamelers H V M, Biesheuvel P M. Nernst-Planck transport theory for (reverse) electrodialysis (Ⅱ): Effect of water transport through ion-exchange membranes[J]. Journal of Membrane Science, 2017, 531: 172-182. |
24 | Honarparvar S, Reible D. Modeling multicomponent ion transport to investigate selective ion removal in electrodialysis[J]. Environmental Science and Ecotechnology, 2020, 1: 100007. |
25 | Wang X, Du Y W, Liu J, et al. Modeling and simulation of continuous electrodialysis metathesis process for conversion of Na2SO4 to K2SO4 [J]. Desalination, 2022, 528: 115605. |
26 | Zhu H T, Yang B, Gao C J, et al. Ion transfer modeling based on Nernst-Planck theory for saline water desalination during electrodialysis process[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(2): e2410. |
27 | 彭金星, 王虎. 基于COMSOL的电渗析回收锂离子过程的数值模拟[J]. 武汉理工大学学报, 2022, 44(6): 14-20, 62. |
Peng J X, Wang H. Numerical simulation of lithium-ion recovery by electrodialysis based on COMSOL[J]. Journal of Wuhan University of Technology, 2022, 44(6): 14-20, 62. | |
28 | Ji Z Y, Chen Q B, Yuan J S, et al. Preliminary study on recovering lithium from high Mg2+/Li+ ratio brines by electrodialysis[J]. Separation and Purification Technology, 2017, 172: 168-177. |
29 | Ji P Y, Ji Z Y, Chen Q B, et al. Effect of coexisting ions on recovering lithium from high Mg2+/Li+ ratio brines by selective-electrodialysis[J]. Separation and Purification Technology, 2018, 207: 1-11. |
30 | 祝海涛, 杨波, 吴雅琴, 等. 电渗析脱盐过程离子传递现象的数值模拟[J]. 化工学报, 2020, 71(8): 3518-3526. |
Zhu H T, Yang B, Wu Y Q, et al. Numerical simulation of ion transfer during electrodialysis desalination process[J]. CIESC Journal, 2020, 71(8): 3518-3526. | |
31 | Koryta J, Dvořák J, Kavan L. Principles of Electrochemistry[M]. 2nd ed. New York: Wiley, 1993. |
32 | Kamcev J, Paul D R, Manning G S, et al. Predicting salt permeability coefficients in highly swollen, highly charged ion exchange membranes[J]. ACS Applied Materials & Interfaces, 2017, 9(4): 4044-4056. |
33 | Zourmand Z, Faridirad F, Kasiri N, et al. Mass transfer modeling of desalination through an electrodialysis cell[J]. Desalination, 2015, 359: 41-51. |
34 | Fíla V, Bouzek K. A mathematical model of multiple ion transport across an ion-selective membrane under current load conditions[J]. Journal of Applied Electrochemistry, 2003, 33(8): 675-684. |
35 | Zhang X C, Wang J, Ji Z Y, et al. Preparation of Li2CO3 from high Mg2+/Li+ brines based on selective-electrodialysis with feed and bleed mode[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106635. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[9] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[10] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 271
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 236
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||