化工学报 ›› 2023, Vol. 74 ›› Issue (7): 2988-2998.DOI: 10.11949/0438-1157.20230240
文兆伦1(), 李沛睿1, 张忠林1(), 杜晓1, 侯起旺1,2, 刘叶刚1,3, 郝晓刚1(), 官国清4
收稿日期:
2023-03-15
修回日期:
2023-06-16
出版日期:
2023-07-05
发布日期:
2023-08-31
通讯作者:
张忠林,郝晓刚
作者简介:
文兆伦(1997—),男,硕士研究生,2269135417@qq.com
基金资助:
Zhaolun WEN1(), Peirui LI1, Zhonglin ZHANG1(), Xiao DU1, Qiwang HOU1,2, Yegang LIU1,3, Xiaogang HAO1(), Guoqing GUAN4
Received:
2023-03-15
Revised:
2023-06-16
Online:
2023-07-05
Published:
2023-08-31
Contact:
Zhonglin ZHANG, Xiaogang HAO
摘要:
工业气体应用广泛,当前常用深冷精馏法获取,工艺能耗巨大,其中压缩和精馏部分的耗能占比最大。基于自热再生和隔壁塔技术,提出了一种隔壁塔深冷空分方案,用单塔精馏空分过程代替双塔精馏空分过程,利用自热再生优化过程换热。利用夹点原理对优化前后的工艺进行能量分析,并从总能量消耗(TEC)、二氧化碳排放量([CO2]em)、年度总费用(TAC)三个角度分别进行评价。结果表明,基于自热再生的隔壁塔深冷空分工艺较常规空分工艺,制氧消耗降低了26.19%,二氧化碳排放减少了25.18%,年度总费用降低了31.93%。利用自热再生技术和隔壁塔技术优化后的空分工艺,在节能、经济以及环保方面表现出更强的优越性。
中图分类号:
文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998.
Zhaolun WEN, Peirui LI, Zhonglin ZHANG, Xiao DU, Qiwang HOU, Yegang LIU, Xiaogang HAO, Guoqing GUAN. Design and optimization of cryogenic air separation process with dividing wall column based on self-heat regeneration[J]. CIESC Journal, 2023, 74(7): 2988-2998.
温度/℃ | 压力/kPa | 空气处理/(m3/h,标准工况) | 组成/%(mol) | ||
---|---|---|---|---|---|
氮气 | 氧气 | 氩气 | |||
25 | 101 | 166900 | 0.7809 | 0.2095 | 0.0096 |
表1 原料进料条件
Table 1 Feeding conditions of raw materials
温度/℃ | 压力/kPa | 空气处理/(m3/h,标准工况) | 组成/%(mol) | ||
---|---|---|---|---|---|
氮气 | 氧气 | 氩气 | |||
25 | 101 | 166900 | 0.7809 | 0.2095 | 0.0096 |
参数 | 上塔 | 下塔 | 粗氩塔 | 精氩塔 |
---|---|---|---|---|
理论级数 | 55 | 35 | 80 | 38 |
进料位置 | 1/8/22/25/28/33/55 | 1/35 | 1/80 | 1/38 |
产品抽出位置 | 1/23/28/55 | 1/21/35 | 1/80 | 1/38 |
塔顶温度/℃ | -192.17 | -178.04 | -191.64 | -192.17 |
塔底温度/℃ | -179.33 | -174.27 | -185.65 | -182.00 |
操作压力/kPa | 150 | 540 | 150 | 150 |
表2 传统空分过程精馏塔参数
Table 2 Parameters of traditional air separation distillation column
参数 | 上塔 | 下塔 | 粗氩塔 | 精氩塔 |
---|---|---|---|---|
理论级数 | 55 | 35 | 80 | 38 |
进料位置 | 1/8/22/25/28/33/55 | 1/35 | 1/80 | 1/38 |
产品抽出位置 | 1/23/28/55 | 1/21/35 | 1/80 | 1/38 |
塔顶温度/℃ | -192.17 | -178.04 | -191.64 | -192.17 |
塔底温度/℃ | -179.33 | -174.27 | -185.65 | -182.00 |
操作压力/kPa | 150 | 540 | 150 | 150 |
参数 | 数值 |
---|---|
NVR | 23 |
NWN | 9 |
NT1 | 110 |
NT2 | 70 |
NT3 | 38 |
TAC/ | 10.06 |
表3 隔壁单塔空分经济最优化结果分析
Table 3 Analysis of economic optimization results of single-tower distillation based air separation process in dividing wall column
参数 | 数值 |
---|---|
NVR | 23 |
NWN | 9 |
NT1 | 110 |
NT2 | 70 |
NT3 | 38 |
TAC/ | 10.06 |
产品名称 | 产量/(m3/h,标准工况) | 纯度/% | ||
---|---|---|---|---|
企业生产数据 | 常规双塔空分 | 隔壁单塔空分 | ||
空气 | 165800 | 166900 | 166900 | — |
氧气 | 30000 | 34800 | 34900 | >99.6 |
氮气 | 17350 | 63000 | 63000 | >99.99 |
氩气 | 670 | 1030 | 1100 | >99.999 |
制氧能耗/ (kW∙h/m3,标准工况) | 0.43 | 0.42 | 0.31 | — |
表4 设计参数对比
Table 4 Comparison of design parameters
产品名称 | 产量/(m3/h,标准工况) | 纯度/% | ||
---|---|---|---|---|
企业生产数据 | 常规双塔空分 | 隔壁单塔空分 | ||
空气 | 165800 | 166900 | 166900 | — |
氧气 | 30000 | 34800 | 34900 | >99.6 |
氮气 | 17350 | 63000 | 63000 | >99.99 |
氩气 | 670 | 1030 | 1100 | >99.999 |
制氧能耗/ (kW∙h/m3,标准工况) | 0.43 | 0.42 | 0.31 | — |
参数 | 常规双塔空分 | 隔壁单塔空分 |
---|---|---|
精馏塔费用/(105 USD/a) | 3.09 | 3.96 |
换热器费用/(106 USD/a) | 4.87 | 1.95 |
压缩机费用/(106 USD/a) | 9.61 | 7.73 |
总投资费用/(107 USD/a) | 3.10 | 2.77 |
总运行费用/(107 USD/a) | 1.09 | 0.66 |
压缩机能耗/kW | 14470 | 10827 |
冷却器能耗/kW | 12325 | 6194 |
总耗能 | 43410 | 32481 |
二氧化碳排放量/(kg/h) | 4078 | 3051 |
年度总费用TAC/(106 USD/a) | 14.78 | 10.06 |
设备折旧年限/a | 8 | 8 |
表5 模拟结果比较
Table 5 Comparison of simulated result
参数 | 常规双塔空分 | 隔壁单塔空分 |
---|---|---|
精馏塔费用/(105 USD/a) | 3.09 | 3.96 |
换热器费用/(106 USD/a) | 4.87 | 1.95 |
压缩机费用/(106 USD/a) | 9.61 | 7.73 |
总投资费用/(107 USD/a) | 3.10 | 2.77 |
总运行费用/(107 USD/a) | 1.09 | 0.66 |
压缩机能耗/kW | 14470 | 10827 |
冷却器能耗/kW | 12325 | 6194 |
总耗能 | 43410 | 32481 |
二氧化碳排放量/(kg/h) | 4078 | 3051 |
年度总费用TAC/(106 USD/a) | 14.78 | 10.06 |
设备折旧年限/a | 8 | 8 |
1 | 王莉君. 空分产品的应用领域及其发展探索[J]. 化工管理, 2019(20): 7-8. |
Wang L J. Application field and development exploration of air separation products[J]. Chemical Enterprise Management, 2019(20): 7-8. | |
2 | He X F, Liu Y N, Rehman A, et al. A novel air separation unit with energy storage and generation and its energy efficiency and economy analysis[J]. Applied Energy, 2021, 281: 115976. |
3 | 智研咨询. 2021年中国气体分离设备行业运营情况分析: 气体分离及液化设备产量 14.85万台[EB/OL]. [2022-05]. . |
Intelligence Research Group. Analysis of the operation of China's gas separation equipment industry in 2021: the output of gas separation and liquefaction equipment was 148,500 units [EB/OL]. [2022-05]. . | |
4 | 彭相磊. 兖矿国宏30000 Nm3/h空分净化装置节能和优化[D]. 天津: 天津大学, 2012. |
Peng X L. Yankuang Guohong 30000 Nm3/h air separation purification device energy saving optimization[D]. Tianjin: Tianjin University, 2012. | |
5 | Smith A R, Klosek J. A review of air separation technologies and their integration with energy conversion processes[J]. Fuel Processing Technology, 2001, 70(2): 115-134. |
6 | 杨尚宇. 空分装置变负荷操作的模拟与优化[D]. 包头: 内蒙古科技大学, 2020. |
Yang S Y. Simulation and optimization of variable load operation in air separation unit[D]. Baotou: Inner Mongolia University of Science & Technology, 2020. | |
7 | Ebrahimi A, Ziabasharhagh M. Optimal design and integration of a cryogenic air separation unit (ASU) with liquefied natural gas (LNG) as heat sink, thermodynamic and economic analyses[J]. Energy, 2017, 126: 868-885. |
8 | 郑捷宇, 厉彦忠, 司标, 等. 基于㶲分析的空分流程对比研究[J]. 工程热物理学报, 2015, 36(10): 2097-2101. |
Zheng J Y, Li Y Z, Si B, et al. Comparative study of air separation process based on exergy analysis[J]. Journal of Engineering Thermophysics, 2015, 36(10): 2097-2101. | |
9 | Taniguchi Masaaki, 张应武, 刘有存. 基于㶲分析的节能型空分装置[J]. 钢铁译文集, 2016(1): 58-62. |
Taniguchi M, Zhang Y W, Liu Y C. Energy saving air-seperation plant based on exergy analysis [J]. Collection of steel translations, 2016(1): 58-62. | |
10 | Kender R, Rößler F, Wunderlich B, et al. Improving the load flexibility of industrial air separation units using a pressure-driven digital twin[J]. AIChE Journal, 2022, 68(7): e17692. |
11 | Asma-ul-Husna, Hasan R, Rashid S A, et al. Energy saving in cryogenic air separation process applying self-heat recuperation technology[C]//Proceedings of the International Conference on Mechanical Engineering and Renewable Energy 2015. Chittagong, Bangladesh, 2015. |
12 | Janusz-Szymańska K, Dryjańska A. Possibilities for improving the thermodynamic and economic characteristics of an oxy-type power plant with a cryogenic air separation unit[J]. Energy, 2015, 85: 45-61. |
13 | 叶青, 裘兆蓉, 韶晖, 等. 热偶精馏技术与应用进展[J]. 天然气化工, 2006, 31(4): 53-56, 65. |
Ye Q, Qiu Z R, Shao H, et al. Progress in the technology and application of thermally coupled distillation [J]. Natural Gas Chemistry, 2006, 31(4): 53-56, 65. | |
14 | 马晨皓, 曾爱武. 隔壁塔流程模拟及节能效益的研究[J]. 化学工程, 2013, 41(3): 1-5, 15. |
Ma C H, Zeng A W. Simulation of dividing-wall-column process and its energy-saving benefits[J]. Chemical Engineering(China), 2013, 41(3): 1-5, 15. | |
15 | 陈梦琪. 热泵常规隔壁塔与热泵共沸精馏隔壁塔的控制研究[D]. 东营: 中国石油大学(华东), 2018. |
Chen M Q. Control of heat pump assisted conventional and azeotropic dividing wall columns[D]. Dongying: China University of Petroleum, 2018. | |
16 | Kender R, Rößler F, Wunderlich B, et al. Development of control strategies for an air separation unit with a divided wall column using a pressure-driven digital twin[J]. Chemical Engineering and Processing-Process Intensification, 2022, 176: 108893. |
17 | 裘兆蓉, 叶青, 李成益. 国内外分隔壁精馏塔现状与发展趋势[J]. 江苏工业学院学报, 2005, 17(1): 58-61. |
Qiu Z R, Ye Q, Li C Y. Status and development trends of dividing wall column at home and abroad[J]. Journal of Jiangsu Polytechnic University, 2005, 17(1): 58-61. | |
18 | 张月明. 隔壁精馏塔技术应用于反应精馏及空气分离的研究[D]. 青岛: 中国石油大学, 2010. |
Zhang Y M. Study on the application of dividing wall column to the reactive distillation and air separation[D]. Qingdao: China University of Petroleum, 2010. | |
19 | 马占华, 翟诚, 李军,等. 隔壁式空分精馏塔应用性能研究[J]. 化学工程, 2012, 40(2): 1-6. |
Ma Z H, Zhai C, Li J, et al. Application of air separation dividing wall column[J]. Chemical Engineering (China), 2012, 40(2): 1-6. | |
20 | Kansha Y, Tsuru N, Sato K, et al. Self-heat recuperation technology for energy saving in chemical processes[J]. Industrial & Engineering Chemistry Research, 2009, 48(16): 7682-7686. |
21 | 陈东良, 张忠林, 杨景轩, 等. 基于自热再生的化学吸收法CO2捕集工艺模拟及节能分析[J]. 化工学报, 2019, 70(8): 2938-2945. |
Chen D L, Zhang Z L, Yang J X, et al. Process simulation and energy saving analysis of CO2 capture by chemical absorption method based on self-heat recuperation[J]. CIESC Journal, 2019, 70(8): 2938-2945. | |
22 | Fushimi C, Kansha Y, Aziz M, et al. Novel drying process based on self-heat recuperation technology[J]. Drying Technology, 2010, 29(1): 105-110. |
23 | 白桂培, 韩东, 姚瑶, 等. 基于自回热原理的木材干燥过程的热力学分析[J]. 能源化工, 2017, 38(2): 1-7. |
Bai G P, Han D, Yao Y, et al. Thermodynamic analysis of wood drying process based on self-heat recuperation technology[J]. Energy Chemical Industry, 2017, 38(2): 1-7. | |
24 | Kansha Y, Kishimoto A, Tsutsumi A. Application of the self-heat recuperation technology to crude oil distillation[J]. Applied Thermal Engineering, 2012, 43: 153-157. |
25 | 陈昱珍. 自热再生技术在原油蒸馏装置中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
Chen Y Z. The application of self-heat recuperation technology in crude oil distillation units[D]. Harbin: Harbin Institute of Technology, 2015. | |
26 | Fu Q, Zhai R R, Feng L J, et al. Performance analysis of the acid gas removal from syngas based on self-heat recuperation technology[J]. Applied Thermal Engineering, 2023, 219: 119506. |
27 | Fu Q, Kansha Y, Song C F, et al. An advanced cryogenic air separation process based on self-heat recuperation for CO2 separation[J]. Energy Procedia, 2014, 61: 1673-1676. |
28 | Fu Q, Kansha Y, Song C F, et al. A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants[J]. Applied Energy, 2016, 162: 1114-1121. |
29 | Fu Q, Kansha Y, Song C F, et al. An elevated-pressure cryogenic air separation unit based on self-heat recuperation technology for integrated gasification combined cycle systems[J]. Energy, 2016, 103: 440-446. |
30 | Lin B S, Malmali M. Energy and exergy analysis of multi-stage vacuum membrane distillation integrated with mechanical vapor compression[J]. Separation and Purification Technology, 2023, 306: 122568. |
31 | 邹环泽. 深冷空分的过程模拟与节能分析[D]. 重庆: 重庆大学, 2017. |
Zou H Z. The simulation and analysis of the process cryogenic air separation[D]. Chongqing: Chongqing University, 2017. | |
32 | 杨泽萌, 韩晓萌, 卢新发. 基于稳态模拟技术的空分增氮工艺流程设计与实施[J]. 冶金动力, 2022, 41(1): 39-42. |
Yang Z M, Han X M, Lu X F. Design and implementation of air separation nitrogen increase process based on steady-state simulation technology[J]. Metallurgical Power, 2022, 41(1): 39-42. | |
33 | Saedi M, Mehrpooya M, Shabani A, et al. Proposal and investigation of a novel process configuration for production of neon from cryogenic air separation unit[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101875. |
34 | Li J E, Zhang F J, Pan Q, et al. Performance enhancement of reactive dividing wall column based on self-heat recuperation technology[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 12179-12191. |
35 | Douglas J M. Conceptual Design of Chemical Processes[M]. New York: McGraw-Hill Book Company, 1988: 30-216. |
36 | Yu H, Ye Q, Xu H, et al. Design and control of dividing-wall column for tert-butanol dehydration system via heterogeneous azeotropic distillation[J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3384-3397 |
37 | 刘叶刚, 张忠林, 侯起旺, 等. TBCFB合成气制甲醇工艺过程的概念设计和计算机模拟[J]. 化工学报, 2021, 72(9): 4838-4846. |
Liu Y G, Zhang Z L, Hou Q W, et al. Process design and simulation of synthesis gas to methanol in TBCFB system [J]. CIESC Journal, 2021, 72(9): 4838-4846. | |
38 | An D C, Cai W F, Xia M, et al. Design and control of reactive dividing-wall column for the production of methyl acetate[J]. Chemical Engineering and Processing: Process Intensification, 2015, 92: 45-60. |
39 | 田奇琦. 大型空气分离系统建模与低能耗化研究[D]. 武汉: 华中科技大学, 2016. |
Tian Q Q. A study on modeling large-scale air separation units and low energy consumption[D]. Wuhan: Huazhong University of Science and Technology, 2016. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[3] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[4] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[5] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[6] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[7] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[8] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[9] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[10] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[11] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[12] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[13] | 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73. |
[14] | 袁妮妮, 郭拓, 白红存, 何育荣, 袁永宁, 马晶晶, 郭庆杰. 化学链燃烧过程Fe2O3/Al2O3载氧体表面CH4反应:ReaxFF-MD模拟[J]. 化工学报, 2022, 73(9): 4054-4061. |
[15] | 魏朋, 陈珺, 王志国, 刘飞. 基于双部分丢弃的模拟移动床产率提高策略[J]. 化工学报, 2022, 73(7): 3099-3108. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 619
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 395
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||