化工学报 ›› 2024, Vol. 75 ›› Issue (11): 3896-3910.DOI: 10.11949/0438-1157.20241152
刘朔1(), 宋雪旦2(
), 聂全灏2, 张强1, 杨艺1, 于畅1(
), 邱介山3(
)
收稿日期:
2024-10-18
修回日期:
2024-11-25
出版日期:
2024-11-25
发布日期:
2024-12-26
通讯作者:
宋雪旦,于畅,邱介山
作者简介:
刘朔(1999—),男,硕士研究生,shuo_liu@mail.dlut.edu.cn
基金资助:
Shuo LIU1(), Xuedan SONG2(
), Quanhao NIE2, Qiang ZHANG1, Yi YANG1, Chang YU1(
), Jieshan QIU3(
)
Received:
2024-10-18
Revised:
2024-11-25
Online:
2024-11-25
Published:
2024-12-26
Contact:
Xuedan SONG, Chang YU, Jieshan QIU
摘要:
锂二次电池凭借成本低、电压平台高和环境友好等优点备受关注,日益复杂的应用场景对锂二次电池的容量、耐候性以及安全性等提出了更高的要求。阐明复杂工况下材料结构与电池性能之间的“构-效”关系并预测不同服役工况下的电池性能,对开发出性能更高和适应场景更宽的锂二次电池至关重要。有限元(FEM)数值模拟是基于电场、温度场和力学场等物理场耦合建立电池数值模型,描述电池内部的物质传递、热量传递及界面反应过程的有效方法,能够揭示不同服役工况下材料结构与电池性能的内在规律关系,为高性能锂二次电池设计和开发提供了理论和技术支撑。本文从多物理场耦合方面介绍了电池体系中FEM数值模拟的算法基础、研究范畴和发展历程,综述了FEM数值模拟在高性能锂二次电池设计中的研究进展,展望了未来发展方向及其在储能器件中的应用前景。
中图分类号:
刘朔, 宋雪旦, 聂全灏, 张强, 杨艺, 于畅, 邱介山. 有限元数值模拟在高性能锂二次电池设计中的应用进展[J]. 化工学报, 2024, 75(11): 3896-3910.
Shuo LIU, Xuedan SONG, Quanhao NIE, Qiang ZHANG, Yi YANG, Chang YU, Jieshan QIU. Application progress of finite element method numerical simulation in the design of high-performance lithium secondary batteries[J]. CIESC Journal, 2024, 75(11): 3896-3910.
图4 (a)纳米纤维与铜箔表面电流密度分布;(b) PANI&MF材料中的锂枝晶生长过程;(c)不同锂负极形貌及其表面电流密度分布; (d) 有/无富锂反钙钛矿(LiRAP)膜时的锂沉积过程
Fig.4 (a) Current density distribution on the surface of nanofibers and copper foils; (b) Growth process of lithium dendrites in PANI&MF materials; (c) Current density distribution on the surface of lithium anode with different morphologies; (d) Lithium deposition process with/without lithium-rich antiperovskites (LiRAP) membrane
图5 (a)极片焊接过程电池的温度分布;(b) 锂沉积区域直径随磁通量密度的变化;(c) 软包电池针刺位置;(d) 不同倍率下电池的容量损失;(e) 电池负极电位随时间变化;(f) 电池组温度分布
Fig.5 (a) Temperature distribution of the cell during electrode welding; (b) Variation of lithium deposition region diameter with magnetic flux; (c) Position of pinning for soft pack batteries; (d) Capacity loss of batteries at various current; (e) Anode potential over time; (f) Temperature distribution in the battery pack
1 | Yuan C. Sustainable battery manufacturing in the future[J]. Nature Energy, 2023, 8: 1180-1181. |
2 | Ma X T, Chen M Y, Zheng Z F, et al. Recycled cathode materials enabled superior performance for lithium-ion batteries[J]. Joule, 2021, 5(11): 2955-2970. |
3 | 康飞, 吕伟光, 巨锋, 等. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
Kang F, Lyu W G, Ju F, et al. Research on discharge path and evaluation of spent lithium-ion batteries[J]. CIESC Journal, 2023, 74(9): 3903-3911. | |
4 | Degen F, Winter M, Bendig D, et al. Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells[J]. Nature Energy, 2023, 8: 1284-1295. |
5 | Wang C Y, Liu T, Yang X G, et al. Fast charging of energy-dense lithium-ion batteries[J]. Nature, 2022, 611(7936): 485-490. |
6 | Cheng X B, Zhang R, Zhao C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. |
7 | 刘鑫, 冯平丽, 侯文烁, 等. 锂硫电池中间层的研究进展[J]. 化工学报, 2020, 71(9): 4031-4045. |
Liu X, Feng P L, Hou W S, et al. Research progress of interlayers for lithium-sulfur batteries[J]. CIESC Journal, 2020, 71(9): 4031-4045. | |
8 | Wu Z Z, Tian Y H, Chen H, et al. Evolving aprotic Li-air batteries[J]. Chemical Society Reviews, 2022, 51(18): 8045-8101. |
9 | Zhang S Q, Li R H, Hu N, et al. Tackling realistic Li+ flux for high-energy lithium metal batteries[J]. Nature Communications, 2022, 13(1): 5431. |
10 | Wi T U, Park S O, Yeom S J, et al. Revealing the dual-layered solid electrolyte interphase on lithium metal anodes via cryogenic electron microscopy[J]. ACS Energy Letters, 2023, 8(5): 2193-2200. |
11 | Nolan A M, Zhu Y Z, He X F, et al. Computation-accelerated design of materials and interfaces for all-solid-state lithium-ion batteries[J]. Joule, 2018, 2(10): 2016-2046. |
12 | Liu J, Bao Z N, Cui Y, et al. Pathways for practical high-energy long-cycling lithium metal batteries[J]. Nature Energy, 2019, 4: 180-186. |
13 | Albertus P, Babinec S, Litzelman S, et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries[J]. Nature Energy, 2018, 3: 16-21. |
14 | Svärd M, Nordström J. Review of summation-by-parts schemes for initial-boundary-value problems[J]. Journal of Computational Physics, 2014, 268: 17-38. |
15 | Argyropoulos C D, Markatos N C. Recent advances on the numerical modelling of turbulent flows[J]. Applied Mathematical Modelling, 2015, 39(2): 693-732. |
16 | Courant R. Variational methods for the solution of problems of equilibrium and vibrations[J]. Bulletin of the American Mathematical Society, 1943, 49: 1-23. |
17 | Turner M J, Clough R W, Martin H C, et al. Stiffness and deflection analysis of complex structures[J]. Journal of the Aeronautical Sciences, 1956, 23(9): 805-823. |
18 | Newman J S, Tobias C W. Theoretical analysis of current distribution in porous electrodes[J]. Journal of the Electrochemical Society, 1962, 109(12): 1183. |
19 | Vogtländer P H, Bakker C A P. An experimental study of mass transfer from a liquid flow to wires and gauzes[J]. Chemical Engineering Science, 1963, 18(9): 583-589. |
20 | Gidaspow D, Baker B S. Heat transfer in a fuel cell battery[J]. AIChE Journal, 1965, 11(5): 825-831. |
21 | Alkire R, Bergh T, Sani R L. Predicting electrode shape change with use of finite element methods[J]. Journal of the Electrochemical Society, 1978, 125(12): 1981-1988. |
22 | Choi K W, Yao N P. Heat transfer in lead-acid batteries designed for electric-vehicle propulsion application[J]. Journal of the Electrochemical Society, 1979, 126(8): 1321-1328. |
23 | Kawamoto H, Hatoh H. Potential distribution and cell resistance calculation of sodium-sulfur battery with finite element method[J]. Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 1985, 53(6): 366-369. |
24 | Bernardi D, Pawlikowski E, Newman J. A general energy balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132(1): 5. |
25 | Lee J, Choi K W, Yao N P, et al. Three-dimensional thermal modeling of electric vehicle batteries[J]. Journal of the Electrochemical Society, 1986, 133(7): 1286-1291. |
26 | Doyle M, Fuller T F, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526. |
27 | Doyle M, Newman J, Gozdz A S, et al. Comparison of modeling predictions with experimental data from plastic lithium ion cells[J]. Journal of the Electrochemical Society, 1996, 143(6): 1890. |
28 | Cheng X, Sastry A M. On transport in stochastic, heterogeneous fibrous domains[J]. Mechanics of Materials, 1999, 31(12): 765-786. |
29 | Kwon K H, Shin C B, Kang T H, et al. A two-dimensional modeling of a lithium-polymer battery[J]. Journal of Power Sources, 2006, 163(1): 151-157. |
30 | Yi Y B, Wang C W, Sastry A M. Compression of packed particulate systems: simulations and experiments in graphitic Li-ion anodes[J]. Journal of Engineering Materials and Technology, 2006, 128(1): 73-80. |
31 | Lu X K, Bertei A, Finegan D P, et al. 3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling[J]. Nature Communications, 2020, 11(1): 2079. |
32 | Gupta P, Gudmundson P. A multi-scale model for simulation of electrochemically induced stresses on scales of active particles, electrode layers, and battery level in lithium-ion batteries[J]. Journal of Power Sources, 2021, 511: 230465. |
33 | Huang Z Y, Chen Z W, Yang M L, et al. Insights into the defect-driven heterogeneous structural evolution of Ni-rich layered cathodes in lithium-ion batteries[J]. Energy & Environmental Science, 2024, 17(16): 5876-5891. |
34 | Han Y L, Wang Z F, Xie L J, et al. Revealing the accelerated reaction kinetic of Ni-rich cathodes by activated carbons for high performance lithium-ion batteries[J]. Carbon, 2023, 203: 445-454. |
35 | 王慧艳, 陈怡沁, 周静红, 等. 锂离子电池正极涂层孔隙结构优化的数值模拟[J]. 化工学报, 2022, 73(1): 376-383. |
Wang H Y, Chen Y Q, Zhou J H, et al. Numerical simulation of cathode coating of lithium-ion battery for porosity optimization[J]. CIESC Journal, 2022, 73(1): 376-383. | |
36 | 葛加丽, 管图祥, 邱新民, 等. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
Ge J L, Guan T X, Qiu X M, et al. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode[J]. CIESC Journal, 2023, 74(7): 3058-3067. | |
37 | Fan X M, Ou X, Zhao W G, et al. In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes[J]. Nature Communications, 2021, 12(1): 5320. |
38 | Liu Y, Wang Q, Chen L, et al. Diffusion-induced stress optimization by boosted surface Li-concentration for single-crystal Ni-rich layered cathodes[J]. Materials Today, 2022, 61: 40-53. |
39 | Ayers M W, Huang H Y S. A comprehensive finite element model for lithium-oxygen batteries[J]. Journal of Materials Research, 2016, 31(18): 2728-2735. |
40 | Mukouyama Y, Hanada S, Goto T, et al. Finite element modeling of the cycle characteristics of Li-O2 secondary batteries considering surface- and solution-route discharge reactions[J]. The Journal of Physical Chemistry C, 2023, 127(22): 10459-10469. |
41 | Kim M C, So J Y, Moon S H, et al. Nature inspired cathodes using high-density carbon papers with an eddy current effect for high-rate performance lithium-air batteries[J]. Journal of Materials Chemistry A, 2018, 6(20): 9550-9560. |
42 | Mehta M R, Knudsen K B, Bennett W R, et al. Li-O2 batteries for high specific power applications: a multiphysics simulation study for a single discharge[J]. Journal of Power Sources, 2021, 484: 229261. |
43 | Meng T, Geng Z Y, Ma F, et al. Highly aligned and low tortuosity nanoarray engineering for fast Li-S batteries[J]. Electrochimica Acta, 2023, 450: 142268. |
44 | Ma H W, Yu Z S, Li H C, et al. Tandem carbon hollow spheres with tailored inner structure as sulfur immobilization for superior lithium-sulfur batteries[J]. Advanced Functional Materials, 2024, 34(12): 2310301. |
45 | Reimuth C, Lin B B, Yang Y, et al. Chemo-mechanical study of dislocation mediated ion diffusion in lithium-ion battery materials[J]. 2021, 130(3): 035103. |
46 | Jana A, Woo S I, Vikrant K S N, et al. Electrochemomechanics of lithium dendrite growth[J]. Energy & Environmental Science, 2019, 12(12): 3595-3607. |
47 | Qiu Z, Shen S H, Liu P, et al. Plasma enhanced lithium coupled with cobalt fibers arrays for advanced energy storage[J]. Advanced Functional Materials, 2023, 33(16): 2214987. |
48 | Wang C H, Li Y H, Zhang Y Q, et al. Integrating a 3D porous carbon fiber network containing cobalt with artificial solid electrolyte interphase to consummate advanced electrodes for lithium-sulfur batteries[J]. Materials Today Energy, 2022, 24: 100930. |
49 | Peng Y Y, Wen Z P, Liu C Y, et al. Refining interfaces between electrolyte and both electrodes with carbon nanotube paper for high-loading lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 6986-6994. |
50 | Liu B, Zhang Y, Wang Z L, et al. Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries[J]. Advanced Materials, 2020, 32(34): 2003657. |
51 | Hu Z Y, Deng W, He B Y, et al. Self-adaptive 3D skeleton with charge dissipation capability for practical Li metal pouch cells[J]. Nano Energy, 2022, 93: 106805. |
52 | Park J, Jeong J, Lee Y J, et al. Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries[J]. Advanced Materials Interfaces, 2016, 3(11): 1600140. |
53 | Han B, Feng D Y, Li S, et al. Self-regulated phenomenon of inorganic artificial solid electrolyte interphase for lithium metal batteries[J]. Nano Letters, 2020, 20(5): 4029-4037. |
54 | Liu Y Y, Xu X Y, Jiao X X, et al. Role of interfacial defects on electro-chemo-mechanical failure of solid-state electrolyte[J]. Advanced Materials, 2023, 35(24): 2301152. |
55 | Shi P, Zhang X Q, Shen X, et al. A pressure self-adaptable route for uniform lithium plating and stripping in composite anode[J]. Advanced Functional Materials, 2021, 31(5): 2004189. |
56 | Jha V, Krishnamurthy B. Modeling the SEI layer formation and its growth in lithium-ion batteries (LiB) during charge-discharge cycling[J]. Ionics, 2022, 28(8): 3661-3670. |
57 | Shen X, Zhang R, Chen X, et al. The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020, 10(10): 1903645. |
58 | Zhang Q B, Chen H X, Luo L L, et al. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11(3): 669-681. |
59 | Lin J, Peng Y Y, Reddy R C K, et al. Carbon-encapsulated anionic-defective MnO/Ni open microcages: a hierarchical stress-release engineering for superior lithium storage[J]. Carbon Energy, 2023, 5(1): e226. |
60 | Li Y, Chen G Y, Liu W X, et al. Construction of porous Si/Ag@C anode for lithium-ion battery by recycling volatile deposition waste derived from refining silicon[J]. Waste Management, 2023, 156: 22-32. |
61 | Hu L L, Zhang X D, Li B, et al. Design of high-energy-dissipation, deformable binder for high-areal-capacity silicon anode in lithium-ion batteries[J]. Chemical Engineering Journal, 2021, 420: 129991. |
62 | Duan S H, Laptev A M, Mücke R, et al. Topological optimization of patterned silicon anode by finite element analysis[J]. Mechanics Research Communications, 2019, 97: 63-69. |
63 | Wang T, Cheng F L, Zhang N, et al. Superassembled red phosphorus nanorod-reduced graphene oxide microflowers as high-performance lithium-ion battery anodes[J]. Advanced Engineering Materials, 2021, 23(7): 2001507. |
64 | Zhou Y F, Su M, Yu X F, et al. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery[J]. Nature Nanotechnology, 2020, 15(3): 224-230. |
65 | Steinrück H G, Takacs C J, Kim H K, et al. Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte[J]. Energy & Environmental Science, 2020, 13(11): 4312-4321. |
66 | Li S Y, Liu Q L, Zhou J J, et al. Hierarchical Co3O4 nanofiber-carbon sheet skeleton with superior Na/Li-philic property enabling highly stable alkali metal batteries[J]. Advanced Functional Materials, 2019, 29(19): 1808847. |
67 | Kim D, Liu X, Yu B Z, et al. Amine-functionalized boron nitride nanosheets: a new functional additive for robust, flexible ion gel electrolyte with high lithium-ion transference number[J]. Advanced Functional Materials, 2020, 30(15): 1910813. |
68 | Wang L L, Xie R C, Chen B B, et al. In-situ visualization of the space-charge-layer effect on interfacial lithium-ion transport in all-solid-state batteries[J]. Nature Communications, 2020, 11(1): 5889. |
69 | Zhang X X, Gupta T, Wang Z L, et al. A treatment of particle-electrolyte sharp interface fracture in solid-state batteries with multi-field discontinuities[J]. Journal of the Mechanics and Physics of Solids, 2024, 182: 105490. |
70 | Lagadec M F, Zahn R, Wood V. Characterization and performance evaluation of lithium-ion battery separators[J]. Nature Energy, 2019, 4: 16-25. |
71 | Ahn Y K, Park J, Shin D, et al. Enhanced electrochemical capabilities of lithium ion batteries by structurally ideal AAO separator[J]. Journal of Materials Chemistry A, 2015, 3(20): 10715-10719. |
72 | Sun B, Zhang Z L, Xu J, et al. Composite separator based on PI film for advanced lithium metal batteries[J]. Journal of Materials Science & Technology, 2022, 102: 264-271. |
73 | Deng Y G, Hussain A, Raza W, et al. Morphological modulation of the PBI membrane and performance optimization for Li-metal battery[J]. Chemical Engineering Journal, 2023, 474: 145800. |
74 | Song Y J, Gao K, He C W, et al. Exploring particle-current collector contact damage in Li ion battery using DEM FEM scheme[J]. Applied Energy, 2023, 351: 121904. |
75 | Feng S J, Yeerella R H, Zhou J B, et al. Homogenizing interfacial stress by nanoporous metal current collector to enable stable all solid state Li metal battery[J]. ACS Energy Letters, 2024, 9(2): 748-757. |
76 | Su B M, Ke X Y, Yuan C. Modeling the effects of state of charge and temperature on calendar capacity loss of nickel-manganese-cobalt lithium-ion batteries[J]. Journal of Energy Storage, 2022, 49: 104105. |
77 | Wu Q C, Huang R, Yu X L. Measurement of thermophysical parameters and thermal modeling of 21, 700 cylindrical battery[J]. Journal of Energy Storage, 2023, 65: 107338. |
78 | Liu X, Ren D S, Hsu H, et al. Thermal runaway of lithium-ion batteries without internal short circuit[J]. Joule, 2018, 2(10): 2047-2064. |
79 | Feng X N, Ren D S, He X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
80 | Liang J L, Gan Y H, Yao M L, et al. Numerical analysis of capacity fading for a LiFePO4 battery under different current rates and ambient temperatures[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120615. |
81 | Bohn P, Liebig G, Komsiyska L, et al. Temperature propagation in prismatic lithium-ion-cells after short term thermal stress[J]. Journal of Power Sources, 2016, 313: 30-36. |
82 | Pan S, Ji C W, Wang S F, et al. Study on the performance of parallel air-cooled structure and optimized design for lithium-ion battery module[J]. Fire Technology, 2020, 56(6): 2623-2647. |
83 | Azizi Y, Sadrameli S M. Thermal management of a LiFePO4 battery pack at high temperature environment using a composite of phase change materials and aluminum wire mesh plates[J]. Energy Conversion and Management, 2016, 128: 294-302. |
84 | Wang A X, Deng Q B, Deng L J, et al. Eliminating tip dendrite growth by Lorentz force for stable lithium metal anodes[J]. Advanced Functional Materials, 2019, 29(25): 1902630. |
85 | Xiong J, Wang S L, Li X R, et al. Mechanical behavior and Weibull statistics based failure analysis of vanadium flow battery stacks[J]. Journal of Power Sources, 2019, 412: 272-281. |
86 | Xiao X R, Wu W, Huang X S. A multi-scale approach for the stress analysis of polymeric separators in a lithium-ion battery[J]. Journal of Power Sources, 2010, 195(22): 7649-7660. |
87 | Ye M Q, Hu G D, Guo F, et al. A novel semi-analytical solution for calculating the temperature distribution of the lithium-ion batteries during nail penetration based on Green's function method[J]. Applied Thermal Engineering, 2020, 174: 115129. |
88 | Seong W M, Park K Y, Lee M H, et al. Abnormal self-discharge in lithium-ion batteries[J]. Energy & Environmental Science, 2018, 11(4): 970-978. |
89 | Chen Z Q, Danilov D L, Zhang Q, et al. Modeling NCA/C6-Si battery ageing[J]. Electrochimica Acta, 2022, 430: 141077. |
90 | Mei W X, Zhang L, Sun J H, et al. Experimental and numerical methods to investigate the overcharge caused lithium plating for lithium ion battery[J]. Energy Storage Materials, 2020, 32: 91-104. |
91 | Song S G, Zhu M Y, Xiong Y W, et al. Mechanical failure mechanism of silicon-based composite anodes under overdischarging conditions based on finite element analysis[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34157-34167. |
92 | Huang H H, Chen H Y, Liao K C, et al. Thermal-electrochemical coupled simulations for cell-to-cell imbalances in lithium-iron-phosphate based battery packs[J]. Applied Thermal Engineering, 2017, 123: 584-591. |
[1] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[2] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[3] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[4] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[5] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[6] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[7] | 吴德威, 汪郑鹏, 周玥, 李晓宁, 陈招, 李卓, 刘成伟, 李学刚, 肖文德. 固定床法制备锂离子电池硅碳负极材料及其储锂性能研究[J]. 化工学报, 2024, 75(S1): 300-308. |
[8] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[9] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[10] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[11] | 王舒英, 左涛, 石志伟, 范小明, 张卫新. 阳离子交换树脂基介孔石墨化碳合成与储钠性能[J]. 化工学报, 2024, 75(9): 3338-3347. |
[12] | 彭丹, 卢俊杰, 倪文静, 杨媛, 汪靖伦. 高电压钴酸锂电池电解液研究进展[J]. 化工学报, 2024, 75(9): 3028-3040. |
[13] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[14] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[15] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 173
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||