| 1 |
Bayon A, de la Calle A, Ghose K K, et al. Experimental, computational and thermodynamic studies in perovskites metal oxides for thermochemical fuel production: a review[J]. International Journal of Hydrogen Energy, 2020, 45(23): 12653-12679.
|
| 2 |
Wang P, Wei R K, Vafai K. A dual-scale transport model of the porous ceria based on solar thermochemical cycle water splitting hydrogen production[J]. Energy Conversion and Management, 2022, 272: 116363.
|
| 3 |
邢卫红, 汪勇, 陈日志, 等. 膜与膜反应器: 现状、挑战与机遇[J]. 中国科学: 化学, 2014, 44(9): 1469-1481.
|
|
Xing W H, Wang Y, Chen R Z, et al. Membranes and membrane reactors: state of the art, challenges, and opportunities[J]. Scientia Sinica Chimica, 2014, 44(9): 1469-1481.
|
| 4 |
Wang Z G, Chen T J, Dewangan N, et al. Catalytic mixed conducting ceramic membrane reactors for methane conversion[J]. Reaction Chemistry & Engineering, 2020, 5(10): 1868-1891.
|
| 5 |
Dong X L, Jin W Q, Xu N P, et al. Dense ceramic catalyticmembranes and membrane reactors for energy and environmental applications[J]. Chemical Communications, 2011, 47(39): 10886-10902.
|
| 6 |
金万勤, 徐南平. 混合导体透氧膜材料的设计与应用[J]. 化工进展, 2006, 25(10): 1143-1151.
|
|
Jin W Q, Xu N P. Design and application of oxygen-permeable membrane materials of mixed conducting oxides[J]. Chemical Industry and Engineering Progress, 2006, 25(10): 1143-1151.
|
| 7 |
Jin W, Gu X, Li S, et al. Experimental and simulation study on a catalyst packed tubular dense membrane reactor for partial oxidation of methane to syngas[J]. Chemical Engineering Science, 2000, 55(14): 2617-2625.
|
| 8 |
Jiang K P, Liu Z K, Zhang G R, et al. A novel catalytic membrane reactor with homologous exsolution-based perovskite catalyst[J]. Journal of Membrane Science, 2020, 608: 118213.
|
| 9 |
Zhu J W, Guo S B, Liu G P, et al. A robust mixed-conducting multichannel hollow fiber membrane reactor[J]. AIChE Journal, 2015, 61(8): 2592-2599.
|
| 10 |
Wang H S, Liu M K, Kong H, et al. Thermodynamic analysis on mid/low temperature solar methane steam reforming with hydrogen permeation membrane reactors[J]. Applied Thermal Engineering, 2019, 152: 925-936.
|
| 11 |
Wang B Z, Kong H, Wang H S, et al. Kinetic and thermodynamic analyses of mid/low-temperature ammonia decomposition in solar-driven hydrogen permeation membrane reactor[J]. International Journal of Hydrogen Energy, 2019, 44(49): 26874-26887.
|
| 12 |
Wang X C, Wang B Z, Wang M, et al. Cyclohexane dehydrogenation in solar-driven hydrogen permeation membrane reactor for efficient solar energy conversion and storage[J]. Journal of Thermal Science, 2021, 30(5): 1548-1558.
|
| 13 |
Kalogirou S A. Solar thermal collectors and applications[J]. Progress in Energy and Combustion Science, 2004, 30(3): 231-295.
|
| 14 |
Tou M, Michalsky R, Steinfeld A. Solar-driven thermochemical splitting of CO2 and in situ separation of CO and O2 across a ceria redox membrane reactor[J]. Joule, 2017, 1(1): 146-154.
|
| 15 |
Tou M, Jin J, Hao Y, et al. Solar-driven co-thermolysis of CO2 and H2O promoted by in situ oxygen removal across a non-stoichiometric ceria membrane[J]. Reaction Chemistry & Engineering, 2019, 4(8): 1431-1438.
|
| 16 |
Hosseini S E, Wahid M A. Hydrogen from solar energy, a clean energy carrier from a sustainable source of energy[J]. International Journal of Energy Research, 2020, 44(6): 4110-4131.
|
| 17 |
王沛, 李嘉宝, 赵亮, 等. 塔式太阳能熔盐吸热器传热特性及㶲分析[J]. 中国电机工程学报, 2019, 39(12): 3605-3614.
|
|
Wang P, Li J B, Zhao L, et al. Thermal and exergy performance of molten salt external cylindrical receiver of solar power towers[J]. Proceedings of the CSEE, 2019, 39(12): 3605-3614.
|
| 18 |
Song H, Luo S Q, Huang H M, et al. Solar-driven hydrogen production: recent advances, challenges, and future perspectives[J]. ACS Energy Letters, 2022, 7(3): 1043-1065.
|
| 19 |
王沛, 李嘉宝, 周领, 等. 太阳能热化学反应器多场耦合及协同优化研究[J]. 太阳能学报, 2022, 43(9): 527-534.
|
|
Wang P, Li J B, Zhou L, et al. Multi-field coupling modeling and cooperative optimization of solar thermal chemical reactor[J]. Acta Energiae Solaris Sinica, 2022, 43(9): 527-534.
|
| 20 |
Wang P, Li J B, Xu R N, et al. Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber[J]. Energy, 2021, 225: 120130.
|
| 21 |
Li J B, Wang P, Liu D Y. Optimization on the gradually varied pore structure distribution for the irradiated absorber[J]. Energy, 2022, 240: 122787.
|
| 22 |
Wu Z Y, Caliot C, Bai F W, et al. Experimental and numerical studies of the pressure drop in ceramic foams for volumetric solar receiver applications[J]. Applied Energy, 2010, 87(2): 504-513.
|
| 23 |
Wu Z Y, Caliot C, Flamant G, et al. Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances[J]. International Journal of Heat and Mass Transfer, 2011, 54(7/8): 1527-1537.
|
| 24 |
Wang P, Vafai K, Liu D Y, et al. Analysis of collimated irradiation under local thermal non-equilibrium condition in a packed bed[J]. International Journal of Heat and Mass Transfer, 2015, 80: 789-801.
|
| 25 |
Hendricks T J, Howell J R. Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics[J]. Journal of Heat Transfer, 1996, 118(1): 79-87.
|
| 26 |
Tan X Y, Li K. Modeling of air separation in a LSCF hollow-fiber membrane module[J]. AIChE Journal, 2002, 48(7): 1469-1477.
|
| 27 |
Xu S J, Thomson W J. Oxygen permeation rates through ion-conducting perovskite membranes[J]. Chemical Engineering Science, 1999, 54(17): 3839-3850.
|
| 28 |
Tsai C Y. Perovskite dense membrane reactors for the partial oxidation of methane to synthesis gas[D]. Worcester: Worcester Polytechnic Institute, 1996.
|
| 29 |
Blanks R F, Wittrig T S, Peterson D A. Bidirectional adiabatic synthesis gas generator[J]. Chemical Engineering Science, 1990, 45(8): 2407-2413.
|
| 30 |
Habib M A, Haque M A, Harale A, et al. Palladium-alloy membrane reactors for fuel reforming and hydrogen production: hydrogen production modeling[J]. Case Studies in Thermal Engineering, 2023, 49: 103359.
|