1 |
Azuma H, Imoto H, Yamada S, et al. Advanced carbon anode materials for lithium ion cells[J]. Journal of Power Sources, 1999, 81: 1-7.
|
2 |
Zhang S S. Dual-carbon lithium-ion capacitors: principle, materials, and technologies[J]. Batteries & Supercaps, 2020, 3(11): 1137-1146.
|
3 |
Park C M, Kim J H, Kim H, et al. Li-alloy based anode materials for Li secondary batteries[J]. Chemical Society Reviews, 2010, 39(8): 3115-3141.
|
4 |
Ma D L, Cao Z Y, Hu A M. Si-based anode materials for Li-ion batteries: a mini review[J]. Nano-Micro Letters, 2014, 6(4): 347-358.
|
5 |
Sourice J, Bordes A, Boulineau A, et al. Core-shell amorphous silicon-carbon nanoparticles for high performance anodes in lithium ion batteries[J]. Journal of Power Sources, 2016, 328: 527-535.
|
6 |
Kim J S, Pfleging W, Kohler R, et al. Three-dimensional silicon/carbon core-shell electrode as an anode material for lithium-ion batteries[J]. Journal of Power Sources, 2015, 279: 13-20.
|
7 |
Su H P, Barragan A A, Geng L X, et al. Colloidal synthesis of silicon-carbon composite material for lithium-ion batteries[J]. Angewandte Chemie International Edition, 2017, 56(36): 10780-10785.
|
8 |
Xiao X C, Zhou W D, Kim Y, et al. Regulated breathing effect of silicon negative electrode for dramatically enhanced performance of Li-ion battery[J]. Advanced Functional Materials, 2015, 25(9): 1426-1433.
|
9 |
Li B, Yang S B, Li S M, et al. From commercial sponge toward 3D graphene-silicon networks for superior lithium storage[J]. Advanced Energy Materials, 2015, 5(15): 1500289.
|
10 |
Jeong M G, Du H L, Islam M, et al. Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries[J]. Nano Letters, 2017, 17(9): 5600-5606.
|
11 |
Zhao J, Lu S M, Hu L Y, et al. Nano Si preparation by constant cell voltage electrolysis of FFC-Cambridge process in molten CaCl2 [J]. Journal of Energy Chemistry, 2013, 22(6): 819-825.
|
12 |
Zhu J, Gladden C, Liu N, et al. Nanoporous silicon networks as anodes for lithium ion batteries[J]. Physical Chemistry Chemical Physics, 2013, 15(2): 440-443.
|
13 |
Sun Y M, Lee H W, Seh Z W, et al. High-capacity battery cathode prelithiation to offset initial lithium loss[J]. Nature Energy, 2016, 1(1): 15008.
|
14 |
He X W, Mu X W, Wang Y G, et al. Fast and scalable complete chemical prelithiation strategy for Si/C anodes enabling high-performance Li x Si-S full cells[J]. ACS Applied Energy Materials, 2023, 6(12): 6790-6796.
|
15 |
You S Z, Tan H T, Wei L C, et al. Design strategies of Si/C composite anode for lithium-ion batteries[J]. Chemistry-A European Journal, 2021, 27(48): 12237-12256.
|
16 |
Yang H, Lin S Y, Cheng A, et al. Recent advances in ball-milling-based silicon anodes for lithium-ion batteries[J]. Energies, 2023, 16(7): 3099.
|
17 |
Fu L, Liu H, Li C, et al. Electrode materials for lithium secondary batteries prepared by sol-gel methods[J]. Progress in Materials Science, 2005, 50(7): 881-928.
|
18 |
Niu C J, Meng J S, Wang X P, et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis[J]. Nature Communications, 2015, 6: 7402.
|
19 |
Yan Z, Guo J C. High-performance silicon-carbon anode material via aerosol spray drying and magnesiothermic reduction[J]. Nano Energy, 2019, 63: 103845.
|
20 |
Entwistle J, Rennie A, Patwardhan S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond[J]. Journal of Materials Chemistry A, 2018, 6(38): 18344-18356.
|
21 |
Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach[J]. Nature Materials, 2010, 9(4): 353-358.
|
22 |
Ko M, Chae S, Ma J, et al. Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries[J]. Nature Energy, 2016, 1(9): 16113.
|
23 |
Chen B J, Chen L, Zu L H, et al. Zero-strain high-capacity silicon/carbon anode enabled by a MOF-derived space-confined single-atom catalytic strategy for lithium-ion batteries[J]. Advanced Materials, 2022, 34(21): 2200894.
|
24 |
Sung J, Kim N, Ma J, et al. Subnano-sized silicon anode via crystal growth inhibition mechanism and its application in a prototype battery pack[J]. Nature Energy, 2021, 6: 1164-1175.
|