| 1 |
Zhao K, Liu Q Q, Yao L B, et al. peri-Fused polyaromatic molecular contacts for perovskite solar cells[J]. Nature, 2024, 632(8024): 301-306.
|
| 2 |
Paik M J, Kim Y Y, Kim J,et al. Ultrafine SnO2 colloids with enhanced interface quality for high-efficiency perovskite solar cells[J]. Joule, 2024, 8(7): 2073-2086.
|
| 3 |
Li M H, Jiao B X, Peng Y C, et al. High-efficiency perovskite solar cells with improved interfacial charge extraction by bridging molecules[J]. Advanced Materials, 2024, 36(38): e2406532.
|
| 4 |
Zhu Z J, Yuan S J, Mao K T, et al. Low-temperature atomic layer deposition of hole transport layers for enhanced performance and scalability in textured perovskite/silicon tandem solar cells[J]. Advanced Energy Materials, 2024,14(42): 2402365.
|
| 5 |
Wang G L, Duan W Y, Lian Q, et al. Reducing voltage loss via dipole tuning for electron-transport in efficient and stable perovskite-silicon tandem solar cells[J]. Advanced Energy Materials, 2024, 14(40): 2401029.
|
| 6 |
Liu Z L, Xiong Z J, Yang S F, et al. Strained heterojunction enables high-performance, fully textured perovskite/silicon tandem solar cells[J]. Joule, 2024, 8(10): 2834-2850.
|
| 7 |
Li C, Li Y H, Chen Y, et al. Enhancing efficiency of industrially-compatible monolithic perovskite/silicon tandem solar cells with dually-mixed self-assembled monolayers[J]. Advanced Functional Materials, 2024: 2407805.
|
| 8 |
Jin Y B, Feng H P, Fang Z, et al. Efficient and stable monolithic perovskite/silicon tandem solar cells enabled by contact-resistance-tunable indium tin oxide interlayer[J]. Advanced Materials, 2024, 36(35): e2404010.
|
| 9 |
Wang S L, Wang P Y, Shi B, et al. Inorganic perovskite surface reconfiguration for stable inverted solar cells with 20.38% efficiency and its application in tandem devices[J]. Advanced Materials, 2023, 35(28): e2300581.
|
| 10 |
Wang S L, Wang P Y, Chen B B, et al. Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%[J]. eScience, 2022, 2(3): 339-346.
|
| 11 |
Ji R, Zhang Z B, Hofstetter Y J, et al. Perovskite phase heterojunction solar cells[J]. Nature Energy, 2022, 7: 1170-1179.
|
| 12 |
Wang S, Li M H, Zhang Y Y, et al. Surface n-type band bending for stable inverted CsPbI3 perovskite solar cells with over 20% efficiency[J]. Energy & Environmental Science, 2023, 16(6): 2572-2578.
|
| 13 |
Gu X J, Xiang W C, Tian Q W, et al. Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells[J]. Angewandte Chemie (International Edition), 2021, 60(43): 23164-23170.
|
| 14 |
Yoon S M, Min H, Kim J B, et al. Surface engineering of ambient-air-processed cesium lead triiodide layers for efficient solar cells[J]. Joule, 2021, 5(1): 183-196.
|
| 15 |
Zhang H, Tian Q W, Xiang W C, et al. Tailored cysteine-derived molecular structures toward efficient and stable inorganic perovskite solar cells[J]. Advanced Materials, 2023, 35(31): e2301140.
|
| 16 |
Tan S, Shi J J, Yu B C, et al. Inorganic ammonium halide additive strategy for highly efficient and stable CsPbI3 perovskite solar cells[J]. Advanced Functional Materials, 2021, 31(21): 2010813.
|
| 17 |
Xu T F, Xiang W C, Kubicki D J, et al. Simultaneous lattice engineering and defect control via cadmium incorporation for high-performance inorganic perovskite solar cells[J]. Advanced Science, 2022, 9(36): e2204486.
|
| 18 |
Wang Z T, Tian Q W, Zhang H, et al. Managing multiple halide-related defects for efficient and stable inorganic perovskite solar cells[J]. Angewandte Chemie (International Edition), 2023, 62(30): e202305815.
|
| 19 |
Yu G H, Jiang K J, Gu W M, et al. Vacuum-assisted thermal annealing of CsPbI3 for highly stable and efficient inorganic perovskite solar cells[J]. Angewandte Chemie (International Edition), 2022,61(27): e202203778.
|
| 20 |
Wang S L, Sun H R, Wang P Y, et al. Small molecule regulatory strategy for inorganic perovskite solar cells with 368mV of VOC deficit and its application in tandem devices[J]. Advanced Energy Materials, 2024, 14(26): 2400151.
|
| 21 |
Sun N N, Fu S, Li Y, et al. Tailoring crystallization dynamics of CsPbI3 for scalable production of efficient inorganic perovskite solar cells[J]. Advanced Functional Materials, 2023, 34 (6): 2309894.
|
| 22 |
Zhang S A, Zhang L, Tian Q W, et al. Spontaneous construction of multidimensional heterostructure enables enhanced hole extraction for inorganic perovskite solar cells to exceed 20% efficiency[J]. Advanced Energy Materials, 2022, 12(1): 2103007.
|
| 23 |
Huang J, Wang H, Chen C Y, et al. Ionic bilateral passivator carboxyethylisothiuronium chloride for CsPbI3- x Br x perovskite solar cells with PCE 20.9% and superior stability[J]. Materials Today, 2023, 67: 46-56.
|
| 24 |
Tan S, Yu B C, Cui Y Q, et al. Temperature-reliable low-dimensional perovskites passivated black-phase CsPbI3 toward stable and efficient photovoltaics[J]. Angewandte Chemie (International Edition), 2022, 61(23): e202201300.
|
| 25 |
Wang P Y, Zhang X W, Zhou Y Q, et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells[J]. Nature Communications, 2018, 9(1): 2225.
|
| 26 |
Yao Z, Xu Z, Zhao W G, et al. Enhanced efficiency of inorganic CsPbI3- x Br x perovskite solar cell via self-regulation of antisite defects[J]. Advanced Energy Materials, 2021, 11(23): 2100403.
|
| 27 |
Yang Y, Chen R H, Wu J D, et al. Bilateral chemical linking at NiOx buried interface enables efficient and stable inverted perovskite solar cells and modules[J]. Angewandte Chemie (International Edition), 2024, 63(36): e202409689.
|
| 28 |
Zhao Q Q, Zhang B Q, Hui W, et al. Oxygen vacancy mediation in SnO2 electron transport layers enables efficient, stable, and scalable perovskite solar cells[J]. Journal of the American Chemical Society, 2024, 146 (28): 19108-19117.
|
| 29 |
Yan N, Cao Y, Dai Z H, et al. Heterogeneous seed-assisted FAPbI3 crystallization for efficient inverted perovskite solar cells[J]. Energy & Environmental Science, 2024, 17(14): 5070-5079.
|
| 30 |
Shi X Y, Liu T X, Dou Y J, et al. Air-processed perovskite solar cells with >25% efficiency and high stability enabled by crystallization modulation and holistic passivation[J]. Advanced Materials, 2024, 36(31): e2402785.
|
| 31 |
Liu T R, Zhao X M, Zhong X J, et al. Improved absorber phase stability, performance, and lifetime in inorganic perovskite solar cells with alkyltrimethoxysilane strain-release layers at the perovskite/TiO2 interface[J]. ACS Energy Letters, 2022, 7(10): 3531-3538.
|
| 32 |
Wu W W, Xiong H, Deng J H, et al. Rotatable skeleton for the alleviation of thermally accumulated defects in inorganic perovskite solar cells[J]. ACS Energy Letters, 2023, 8(5): 2284-2291.
|
| 33 |
Wang S L, Qi S S, Sun H R, et al. Nanoscale local contacts enable inverted inorganic perovskite solar cells with 20.8% efficiency[J]. Angewandte Chemie (International Edition), 2024, 63(19): e202400018.
|