化工学报 ›› 2025, Vol. 76 ›› Issue (4): 1569-1582.DOI: 10.11949/0438-1157.20241116
徐东亮1(
), 赵彬彬1, 孙逸玫2, 刘婷婷1, 刘筱然1, 陈明功1(
)
收稿日期:2024-10-09
修回日期:2024-11-05
出版日期:2025-04-25
发布日期:2025-05-12
通讯作者:
陈明功
作者简介:徐东亮(1999—),男,硕士研究生,xu_aust@163.com
基金资助:
Dongliang XU1(
), Binbin ZHAO1, Yimei SUN2, Tingting LIU1, Xiaoran LIU1, Minggong CHEN1(
)
Received:2024-10-09
Revised:2024-11-05
Online:2025-04-25
Published:2025-05-12
Contact:
Minggong CHEN
摘要:
旋转填充床(RPB)在强化反应、过程传质中存在巨大的潜力,但其内部复杂的流场研究仍然是一个挑战。研究流体运动对于探索传质过程至关重要,由于RPB运行需要处于高密封状态,所以限制了对RPB内部流场细节的捕捉,然而,计算流体力学(CFD)模拟为流场分析提供了有效途径。本研究提出了一种CFD模型用于研究RPB内部各个腔区的气相流动。采用多孔介质模型模拟填料区域,特别将离心旋转引入到阻力计算中,提出了一种结合转子转速的阻力系数修正方程。实验研究了不同转子转速和气体流量条件下的稳态运行过程,通过对阻力修正后的CFD模型进行迭代计算,得到了RPB的干压降,并作为关键性能指标,收敛压降值和实验结果的平均偏差仅为4.71%,最大偏差为12.24%,验证了CFD模拟的结果。基于验证后的理论模型,通过结合复式逆旋转子(CIR)结构,将内转子设置为1500 r/min,开展了进一步的转子性能研究。结果显示,RPB填料处的平均湍流动能最高提高到5.77倍,证实了结构优化在提升RPB传质和处理效率方面的可能性,为RPB强化化工行业环保设备的深入研发提供了理论依据。
中图分类号:
徐东亮, 赵彬彬, 孙逸玫, 刘婷婷, 刘筱然, 陈明功. 基于修正多孔介质模型的RPB模拟与流场特性研究[J]. 化工学报, 2025, 76(4): 1569-1582.
Dongliang XU, Binbin ZHAO, Yimei SUN, Tingting LIU, Xiaoran LIU, Minggong CHEN. Simulation and optimal design of RPB based on modified porous medium model[J]. CIESC Journal, 2025, 76(4): 1569-1582.
| 几何特征 | 符号 | 数值/mm |
|---|---|---|
| 壳体径向 | dsr | 304 |
| 壳体轴向 | dsa | 342 |
| 壁厚 | dw | 2 |
| 填料外径 | dpo | 164 |
| 填料内径 | dpi | 134 |
| 填料轴向 | dpa | 176 |
| 进气口管道内径 | din | 102 |
| 出气口管道内径 | dout | 102 |
表1 旋转填充床的几何尺寸
Table 1 Geometric dimensions of rotating packed beds
| 几何特征 | 符号 | 数值/mm |
|---|---|---|
| 壳体径向 | dsr | 304 |
| 壳体轴向 | dsa | 342 |
| 壁厚 | dw | 2 |
| 填料外径 | dpo | 164 |
| 填料内径 | dpi | 134 |
| 填料轴向 | dpa | 176 |
| 进气口管道内径 | din | 102 |
| 出气口管道内径 | dout | 102 |
| 1 | Han H, Yan J S, Li Y X, et al. Three-dimensional gas-liquid flow simulation of a rotating packed bed using Eulerian porous media models[J]. Journal of Industrial and Engineering Chemistry, 2024, 131: 607-622. |
| 2 | Im D, Jung H, Lee J H. Modeling, simulation and optimization of the rotating packed bed (RPB) absorber and stripper for MEA-based carbon capture[J]. Computers & Chemical Engineering, 2020, 143: 107102. |
| 3 | 程婷, 焦纬洲, 刘有智. 功能性填料在超重力旋转填料床中的应用和研究进展[J]. 化工学报, 2024, 75(4): 1414-1428. |
| Cheng T, Jiao W Z, Liu Y Z. Application and research progress of functional packings in high-gravity rotating packed bed[J]. CIESC Journal, 2024, 75(4): 1414-1428. | |
| 4 | Wang J Q, Ouyang Y, Li W L, et al. CFD analysis of gas flow characteristics in a rotating packed bed with randomly arranged spherical packing[J]. Chemical Engineering Journal, 2020, 385: 123812. |
| 5 | Li Y M, Wang Y H, Yao W B, et al. Liquid-phase mass-transfer processes in packings with a segregated flow model[J]. Separation and Purification Technology, 2022, 301: 121956. |
| 6 | Luo Y, Chu G W, Zou H K, et al. Gas-liquid effective interfacial area in a rotating packed bed[J]. Industrial & Engineering Chemistry Research, 2012, 51(50): 16320-16325. |
| 7 | Kumar G, Gole S, Murthy D S. Analysis of thermal performance characteristics of rotating packed beds using response surface methodology[J]. Applied Thermal Engineering, 2024, 254: 123884. |
| 8 | Dudek K, Valdez-Vazquez I, Koop J. Butanol recovery from synthetic fermentation broth by vacuum distillation in a rotating packed bed[J]. Separation and Purification Technology, 2022, 297: 121551. |
| 9 | Zhu K L, Li Y J, Ma Q, et al. Removal of catalyst particles in the fluid catalytic cracking slurry oil by chemical settling in a rotating packed bed[J]. Separation and Purification Technology, 2024, 332: 125722. |
| 10 | Duan H L, Zhu K, Lu H F, et al. CO2 absorption performance in a rotating disk reactor using DBU-glycerol as solvent[J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 104-113. |
| 11 | 韩宇, 周乐, 张鑫, 等. 高黏附性Pd/SiO2/NF整体式催化剂的制备及加氢性能研究[J]. 化工学报, 2024, 75(4): 1533-1542. |
| Han Y, Zhou L, Zhang X, et al. Preparation of high adhesion Pd/SiO2/NF monolithic catalyst and its hydrogenation performance[J]. CIESC Journal, 2024, 75(4): 1533-1542. | |
| 12 | Dhaneesh K P, Ranganathan P. A comprehensive review on the hydrodynamics, mass transfer and chemical absorption of CO2 and modelling aspects of rotating packed bed[J]. Separation and Purification Technology, 2022, 295: 121248. |
| 13 | Cheng S Y, Qi G S, Wu L M, et al. Deep purification of low concentration fine particles in a cross flow rotating packed bed[J]. Journal of the Taiwan Institute of Chemical Engineers, 2023, 143: 104723. |
| 14 | Dong K, Yang Y, Luo Y, et al. Synthesis of nano-Ni by liquid reduction method in a combined reactor of rotating packed bed and stirred tank reactor[J]. Industrial & Engineering Chemistry Research, 2018, 57(11): 3908-3913. |
| 15 | Liu L. A comprehensive model of adsorption of resorcinol in rotating packed bed: theoretical, isotherm, kinetics and thermodynamics[J]. Journal of Environmental Chemical Engineering, 2023, 11(5): 111041. |
| 16 | Blatkiewicz M, Wojtasik-Malinowska J, Zawadzki D, et al. Modeling and simulation of an enzymatic reactive absorption process in the internal zone of a rotating packed bed apparatus[J]. Chemical Engineering and Processing - Process Intensification, 2023, 189: 109409. |
| 17 | Zhang W, Xie P, Li Y X, et al. CFD analysis of the hydrodynamic characteristics in a rotating packed bed with multi-nozzles[J]. Chemical Engineering and Processing - Process Intensification, 2020, 158: 108107. |
| 18 | Liu Z H, Xu H Z, Chen W C, et al. Dispersion characteristics of liquid jet impacting on the rotating single-layer wire mesh with different surface wettabilities[J]. Chemical Engineering Science, 2022, 251: 117495. |
| 19 | 邹海魁, 初广文, 向阳, 等. 超重力反应强化技术最新进展[J]. 化工学报, 2015, 66(8): 2805-2809. |
| Zou H K, Chu G W, Xiang Y, et al. New progress of HlGEE reaction technology[J]. CIESC Journal, 2015, 66(8): 2805-2809. | |
| 20 | Zhang J P, Liu W, Luo Y, et al. Enhancing liquid droplet breakup by hydrophobic wire mesh: visual study and application in a rotating packed bed[J]. Chemical Engineering Science, 2019, 209: 115180. |
| 21 | 刘易, 武威, 罗勇, 等. 旋转填充床反应器流体流动可视化研究进展[J]. 化工学报, 2019, 70(10): 3663-3676. |
| Liu Y, Wu W, Luo Y, et al. Visual study of fluid flow in rotating packed bed reactors: a review[J]. CIESC Journal, 2019, 70(10): 3663-3676. | |
| 22 | 王云飞, 秦蕊, 郑利军, 等. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
| Wang Y F, Qin R, Zheng L J, et al. Research progress of rotating packed bed simulation through CFD method[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 1-9. | |
| 23 | Liu Y, Wu W, Luo Y, et al. CFD simulation and high-speed photography of liquid flow in the outer cavity zone of a rotating packed bed reactor[J]. Industrial & Engineering Chemistry Research, 2019, 58(13): 5280-5290. |
| 24 | Duan X F, Yuan Z G, Liu Y Z, et al. Numerical simulation and experimental study of the characteristics of packing feature size on liquid flow in a rotating packed bed[J]. Chinese Journal of Chemical Engineering, 2021, 34: 22-31. |
| 25 | Groß K, Bieberle A, Gladyszewski K, et al. Analysis of flow patterns in high‐gravity equipment using gamma‐ray computed tomography[J]. Chemie Ingenieur Technik, 2019, 91(7): 1032-1040. |
| 26 | Wen Z N, Li Y B, Liu W, et al. Flow behavior in a rotating packed bed reactor with single-layer mesh: effect of fiber cross-sectional shape[J]. Chemical Engineering Science, 2022, 248: 117147. |
| 27 | Su L X, Liu Z H, Li Y B, et al. Structure optimization of an internal circulation rotating packed bed for the circulation liquid flow improvement: numerical study[J]. Chemical Engineering and Processing - Process Intensification, 2022, 177: 108992. |
| 28 | Zhang M, Zhang Y T, Ma D X, et al. Numerical investigation on the heat transfer of plastic waste pyrolysis in a rotary furnace[J]. Chemical Engineering Journal, 2022, 445: 136686. |
| 29 | Xie P, Lu X S, Ding H B, et al. A mesoscale 3D CFD analysis of the liquid flow in a rotating packed bed[J]. Chemical Engineering Science, 2019, 199: 528-545. |
| 30 | Zhang W, Xie P, Li Y X, et al. 3D CFD simulation of the liquid flow in a rotating packed bed with structured wire mesh packing[J]. Chemical Engineering Journal, 2022, 427: 130874. |
| 31 | Hacking J A, Delsing N F E J, de Beer M M, et al. Improving liquid distribution in a rotating packed bed[J]. Chemical Engineering and Processing - Process Intensification, 2020, 149: 107861. |
| 32 | Rabiee R, Monzavi M, Shabanian J, et al. Two-phase flow characterization of a rotating packed bed through CFD simulation in OpenFOAM[J]. Chemical Engineering Science, 2022, 253: 117589. |
| 33 | Duan X X, Wang L W, Wu J W, et al. Research on carbon dioxide capture and mass transfer in hydro-jet cyclone[J]. Separation and Purification Technology, 2024, 330: 125394. |
| 34 | Lu X, Xie P, Ingham D B, et al. A porous media model for CFD simulations of gas-liquid two-phase flow in rotating packed beds[J]. Chemical Engineering Science, 2018, 189: 123-134. |
| 35 | 张亮亮, 付纪文, 罗勇, 等. 面向海洋工程的超重力过程强化技术及应用[J]. 化工学报, 2020, 71(1): 1-15. |
| Zhang L L, Fu J W, Luo Y, et al. Higee process intensification technology and application for oceaneering[J]. CIESC Journal, 2020, 71(1): 1-15. | |
| 36 | Zawadzki D, Blatkiewicz M. Pressure drop model for rotating packed bed structural internals[J]. Chemical Engineering Research and Design, 2023, 196: 89-100. |
| 37 | Alatyar A M, Berrouk A S, Alshehhi M S, et al. Design optimization of a rotating packed bed based on dry hydraulic performance[J]. Alexandria Engineering Journal, 2023, 70: 475-493. |
| 38 | Qian C, Pei J, Fan Y, et al. Steel slag powder-CO2 contact state in static or rotary process of carbon fixation[J]. Chemical Engineering Journal, 2024, 496: 153958. |
| 39 | 王辰宇, 刘玉杰, 高雪颖, 等. 应用CFD方法分析球填料旋转床内气相流动特征[J]. 高校化学工程学报, 2018, 32(5): 1004-1011. |
| Wang Z Y, Liu Y J, Gao X Y, et al. CFD analysis of gas flow in a rotating ball-packed bed[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(5): 1004-1011. | |
| 40 | 韩黎. 恒流通截面旋转填充床流体混合性能及应用研究[D]. 北京: 北京化工大学, 2024. |
| Han L. Mixing performance and application studies of rotating packed bed with constant cross-sectional area packings[D]. Beijing: Beijing University of Chemical Technology, 2024. | |
| 41 | Wojtasik-Malinowska J, Jaskulski M, Jaskulski M. CFD simulation of gas pressure drop in porous packing for rotating packed beds (RPB) CO2 absorbers[J]. Environmental Science and Pollution Research, 2022, 29(47): 71857-71870. |
| 42 | Cloete S, Johansen S T, Amini S. Grid independence behaviour of fluidized bed reactor simulations using the two fluid model: effect of particle size[J]. Powder Technology, 2015, 269: 153-165. |
| 43 | 叶非华, 廖虎, 易国斌. 基于多孔介质模型的膜式氧合器内部流场分析[J]. 化工进展, 2020, 39(3): 898-905. |
| Ye F H, Liao H, Yi G B. Internal flow field analysis of membrane oxygenator based on porous media model[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 898-905. | |
| 44 | Li Y B, Wen Z N, Xu H Z, et al. Mass transfer modeling for viscous fluids in a disk-distributor rotating packed bed[J]. Chemical Engineering Journal, 2023, 453: 139604. |
| 45 | Gładyszewski K, Groβ K, Bieberle A, et al. Evaluation of performance improvements through application of anisotropic foam packings in rotating packed beds[J]. Chemical Engineering Science, 2021, 230: 116176. |
| 46 | Li H T, Yuan Z G, Liu Y Z, et al. Characteristics of liquid flow in a countercurrent rotating bed[J]. Chemical Engineering and Processing - Process Intensification, 2019, 136: 72-81. |
| 47 | 郭正东, 苏梦军, 刘含笑, 等. 旋转填充床基础研究及工业应用进展[J]. 化工进展, 2018, 37(4): 1335-1346. |
| Guo Z D, Su M J, Liu H X, et al. States-of-the-arts progress on fundamental research and industrial applications of rotating packed bed[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1335-1346. | |
| 48 | Xu H Z, Liu Z H, Li Y B, et al. Liquid dispersion behaviors in a rotating packed bed with different packing arrangements: a comparison study[J]. Chemical Engineering Science, 2024, 293: 120054. |
| 49 | 文章楠. 恒流通截面旋转填充床流体流动与传质性能研究[D]. 北京: 北京化工大学, 2022. |
| Wen Z N. Studies of liquid flow behavior and mass transfer performance in a rotating packed bed with constant cross-sectional area[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
| 50 | 赵倩, 王峰, 白岩, 等. 旋转填充床运行过程重要参数预警调控模型[J]. 北京化工大学学报(自然科学版), 2023, 50(3): 83-91. |
| Zhao Q, Wang F, Bai Y, et al. An early warning control model for the important parameters of a rotating packed bed operation process[J]. Journal of Beijing University of Chemical Technology(Natural Science Edition), 2023, 50(3): 83-91. |
| [1] | 姚国家, 王志, 苏昂, 冯东阁, 唐宏, 孙灵芳. 空气系数对煤粉预热解燃烧特性的影响分析[J]. 化工学报, 2025, 76(3): 1243-1252. |
| [2] | 谢楠楠, 陈和, 叶光华, 束忠明, 傅送保, 周兴贵. 气液搅拌釜多层桨叶相互作用及组合优化[J]. 化工学报, 2025, 76(2): 564-575. |
| [3] | 张恒, 魁殿禄, 常虹, 詹志刚. 机械应力对气体扩散层界面传输特性影响[J]. 化工学报, 2025, 76(2): 637-644. |
| [4] | 张闯德, 陈黎. 优势通道对多孔介质中多相反应输运过程影响的孔隙尺度研究[J]. 化工学报, 2025, 76(1): 161-172. |
| [5] | 黄娜, 蒋云龙, 王东涵, 吴明婷, 蒋雪莉, 钟豫. 通道振动频率对超临界正癸烷裂解流动换热影响的数值研究[J]. 化工学报, 2025, 76(1): 173-183. |
| [6] | 李彦, 郭红利, 苏国庆, 张建文. 加氢装置空冷器气液两相流动与冲刷腐蚀问题[J]. 化工学报, 2025, 76(1): 141-150. |
| [7] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
| [8] | 李雨霜, 王兴成, 温伯尧, 骆政园, 白博峰. 多孔介质中乳状液驱油的两相流动过程及其影响因素[J]. 化工学报, 2024, 75(S1): 56-66. |
| [9] | 祝赫, 张仪, 齐娜娜, 张锴. 欧拉-欧拉双流体模型中颗粒黏性对液固散式流态化的影响[J]. 化工学报, 2024, 75(9): 3103-3112. |
| [10] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
| [11] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
| [12] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
| [13] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
| [14] | 杨明军, 巩广军, 郑嘉男, 宋永臣. 泥质低渗水合物降压开采特性与模型研究[J]. 化工学报, 2024, 75(8): 2909-2916. |
| [15] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号