[1] |
Zheng Lijiao (郑丽娇), Guo Xiaolei (郭晓镭), Dai Zhenghua (代正华), Guo Yunzhou (郭云舟), Xiao Weiguo (肖为国), Huang Wanjie (黄万杰),Gong Xin (龚欣). Flow characteristic of pulverized coal from aeration silo [J]. Journal of Chemical Industry and Engineering (China) (化工学报), 2007, 58 (9): 2375-2381
|
[2] |
Ma Sheng (马胜), Guo Xiaolei (郭晓镭), Gong Xin (龚欣), Huang Wanjie (黄万杰), Lu Haifeng (陆海峰),Liu Kai (刘凯). Flow regime of pulverized coal in dense-phase pneumtic conveying system [J]. CIESC Journal (化工学报), 2010, 61 (6): 1415-1422
|
[3] |
Ferrari G, Poletto M. The particle velocity field inside a two-dimensional aerated hopper [J]. Powder Technology, 2002, 123: 242-253
|
[4] |
Anand A, Curtis J S, Wassgren C R, Hancock B C, Ketterhagen W R. Predicting discharge dynamics from a rectangular hopper using the discrete element method (DEM) [J]. Chemical Engineering Science, 2008, 63 (24): 5821-5830
|
[5] |
González-Montellano C, Gallego E, Ramírez-Gómez Á, Ayuga F. Three dimensional discrete element models for simulating the filling and emptying of silos: analysis of numerical results [J]. Computers & Chemical Engineering, 2012, 40: 22-32
|
[6] |
Balevi?ius R, Ka?ianauskas R, Mróz I Z. Sielamowicz. Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes [J]. Advanced Powder Technology, 2011, 22 (2): 226-235
|
[7] |
Fickie K E, Mehrabi R, Jackson R. Density variations in a granular material flowing from a wedge-shaped hopper [J]. AIChE Journal, 1989, 35 (5): 853-855
|
[8] |
Gentzler M, Tardos G I. Measurement of velocity and density profiles in discharging conical hoppers by NMR imaging [J]. Chemical Engineering Science, 2009, 64 (22): 4463-4469
|
[9] |
Sielamowicz I, B?oñski S, Kowalewski A T. Digital particle image velocimetry (DPIV) technique in measurements of granular material flows, part 2 of 3-converging hoppers [J]. Chemical Engineering Science, 2006, 61 (16): 5307-5317
|
[10] |
Donsi G, Ferrari G, Poletto M. Distribution of gas pressure inside a hopper discharging fine powders [J]. Chemical Engineering Science, 1997, 52 (23): 4291-4302
|
[11] |
Weir G J. A mathematical model for dilating, non-cohesive granular flows in steep-walled hoppers [J]. Chemical Engineering Science, 2004, 59 (1): 149-161
|
[12] |
Hirshfeld D, Rapaport D C. Granular flow from a silo discrete-particle simulations in three dimensions [J]. The European Physical Journal, 2001, 4: 193-199
|
[13] |
Ketterhagen W R, Curtis J S, Wassgren C R, Hancock B C. Predicting the flow mode from hoppers using the discrete element method [J]. Powder Technology, 2009, 195 (1): 1-10
|
[14] |
Abbasi A, Islam M A, Ege P E, de Lasa H I. CPFD flow pattern simulation in downer reactors [J]. AIChE Journal, 2013, 59 (5): 1635-1647
|
[15] |
Cheng Huixing (程慧星), Gong Xin (龚欣), Guo Xiaolei (郭晓镭), Dai Zhenghua (代正华), Chen Feng (陈锋), Xiong Lang (熊浪). Mathematicle model analysis of powder flow in hopper [J]. Chemical Engineering (China) (化学工程), 2005, 33 (3): 33-35
|
[16] |
Andrews M J, O'rourke P J. The multiphase particle-in-cell (MP-PIC) method for dense particle flow [J]. Int. J. Multiphase Flow, 1996, 22 (2): 379-402
|
[17] |
Zhang Ruiqing (张瑞卿), Yang Hairui (杨海瑞), Lü Junfu (吕俊复). Application of CPFD approach on gas-solid flow and combustion in industrial CFB boilers [J]. Proceedings of the CSEE (中国电机工程学报), 2013, 33 (23): 75-82
|
[18] |
Snider D M. Three fundamental granular flow experiments and CPFD predictions [J]. Powder Technology, 2007, 176 (1): 36-46
|
[19] |
Snider D M. An incompressible three-dimensional multiphase particle-in-cell model for dense particle flows [J]. Journal of Computational Physics, 2001, 170 (2): 523-549
|
[20] |
Karimipour S, Pugsley T. Application of the particle in cell approach for the simulation of bubbling fluidized beds of Geldart A particles [J]. Powder Technology, 2012, 220: 63-69
|
[21] |
Harris S E, Crighton D G. Solitons, solitary waves, and voidage disturbances in gas-fluidized beds [J]. J. Fluid Mech., 1994, 266: 243-276
|
[22] |
Auzerais F M, Jackson R, Russel W B. The resolution of shocks and the effects of compressible sediments in transient settling [J]. Journal Fluid Mech., 1988, 195: 437-462
|
[23] |
Geldart D. Types of gas fluidization [J]. Powder Technology,1973, 7: 285-292
|
[24] |
Nedderman R M, Tuzun U, Savage, S B, Houlsby G T. Review article number 10:the flow of granular material: discharge rates from hopper [J]. Chemical Engineering Science, 1982, 37 (11): 1597-1609
|
[25] |
Lu H F, Guo X L, Zhao W, Gong X, Lu J. Experimental and CPFD numerical study on hopper discharge [J]. Industrial & Engineering Chemistry Research, 2014, 53: 12160-12169
|
[26] |
Spink C D, Nedderman R M. Gravity discharge rate of fine particles from hoppers [J]. Powder Technology, 1978, 21: 245-261
|
[27] |
Lu Haifeng (陆海峰), Guo Xiaolei (郭晓镭), Tao Shunlong (陶顺龙), Gong Xin (龚欣), Lu Jun (鲁军). Application of electrical capacitance tomography in hopper discharge of pulverized coal [J]. CIESC Journal (化工学报), 2014, 65 (2): 422-428
|