化工学报

• 分离工程 • 上一篇    下一篇

不同管径碳纳米管中CO2/CH4分离的分子模拟

曹伟1, 吕玲红1, 黄亮亮2, 王珊珊1, 朱育丹1   

  1. 1 南京工业大学材料化学工程国家重点实验室, 江苏 南京 210009;
    2 Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
  • 收稿日期:2014-01-02 修回日期:2014-03-17 出版日期:2014-05-05 发布日期:2014-05-05
  • 通讯作者: 吕玲红
  • 基金资助:

    国家重点基础研究发展计划项目(2013CB733501);国家自然科学基金项目( 21176113,21136004,21206070,91334202);江苏高校优势学科建设工程项目。

Molecular simulations on diameter effect of carbon nanotube for separation of CO2/CH4

CAO Wei1, LÜ Linghong1, HUANG Liangliang2, WANG Shanshan1, ZHU Yudan1   

  1. 1 State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, China;
    2 Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
  • Received:2014-01-02 Revised:2014-03-17 Online:2014-05-05 Published:2014-05-05
  • Supported by:

    supported by the National Basic Research Program of China (2013CB733501), the National Natural Science Foundation of China(21176113, 21136004, 21206070, 91334202) and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

摘要: 生物甲烷路线在CO2减排和节能方面有很大的应用前景。而对生物沼气的分离是此路线的一个关键问题,特别是在60℃和0.1 MPa下。巨正则Monte Carlo(GCMC)和平衡分子动力学(EMD)的分子模拟方法研究CO2和CH4在不同管径的碳纳米管(CNT)中的吸附和扩散,可以从分子层面研究生物沼气的分离机理。分别计算了CO2/CH4二元混合物吸附量、吸附选择性、自扩散系数和渗透选择性等参数。模拟结果表明:由于碳管的受限空间和CO2与碳纳米管壁面分子之间强相互作用,导致二元等物质的量的混合物CO2/CH4的吸附量和扩散系数的差异。CO2的吸附量和自扩散系数都比CH4的大。渗透选择性在碳管管径达到最接近1 nm时达到最大值,此时混合物的分离过程是吸附控制,而非扩散控制。

关键词: 分子模拟, 碳纳米管, 生物沼气, 分离, 自扩散, 选择性

Abstract: Biomethane route has large potential in emission reduction and energy saving. One of the key issues is separation of biogas in operating conditions of 333 K and 0.1 MPa. Grand canonical Monte Carlo (GCMC) and equilibrium molecular dynamics simulations (EMD) were used to compute adsorption loadings and self-diffusivities of CH4/CO2 at various diameters of carbon nanotube (CNT) bundles. Single component and equimolar gases were simulated. CO2 always had larger adsorption loading and diffusion coefficient than CH4 as the result of relatively strong interaction between CO2 molecules and tube walls, due to the confined capacity. The permselectivity reached a maximum in closely 1 nm, and under such conditions the separation process was controlled by adsorption rather than diffusion.

Key words: molecular simulation, carbon nanotube, biogas, separation, self-diffusion, selectivity

中图分类号: