[1] |
Lai Shujuan, Zhang Yun, Liu Shuwen, Liang Yong, Shang Xiuling, Chai Xin, Wen Tingyi. Metabolic engineering and flux analysis of Corynebacterium glutamicum for L-serine production [J]. Science China Life Sciences, 2012, 55(4): 283-290.
|
[2] |
Wu Y, Li P, Zheng P, Zhou W, Chen N, Sun J. Complete genome sequence of Corynebacterium glutamicum B253, a Chinese lysine-producing strain [J]. J. Biotechnol., 2015, 4(207): 10-11.
|
[3] |
Wang N, Ni Y, Shi F. Deletion of odhA or pyc improves production of γ-aminobutyric acid and its precursor L-glutamate in recombinant Corynebacterium glutamicum [J]. Biotechnol. Lett., 2015, 37(7): 1473-1481.
|
[4] |
Shi X, Chen Y, Ren H, Liu D, Zhao T, Zhao N, Ying H. Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler [J]. Bioresour. Technol., 2014, 174: 190-197.
|
[5] |
Dae-Kyun Ro, Eric M Paradise, Jay D Keasling, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J]. Nature, 2005, 440(7086): 940-943.
|
[6] |
Patrick J Westfall, Douglas J Pitera, Jay D Keasling, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin [J]. Proc. Natl. Acad. Sci. USA, 2012, 109(3): E111-E118.
|
[7] |
Jennewein S, Park H, DeJong J M, Long R M, Bollon A P, Croteau R B. Coexpression in yeast of Taxus cytochrome P450 reductase with cytochrome P450 oxygenases involved in Taxol biosynthesis [J]. Biotechnol. Bioeng., 2005, 89(5): 588-598.
|
[8] |
Guo J, Zhou Y J, Hillwig M L, Huang L, et al. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts [J]. Proc. Natl. Acad. Sci. USA, 2013, 110(29): 12108-12113.
|
[9] |
Gao Z X, Zhao H, Li Z M, Tan X M, Lu X F. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria [J]. Energy & Environmental Science, 2012, 5(12): 9857-9865.
|
[10] |
Lan E I, Liao J C. Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide [J]. Metabolic Engineering, 2011, 13(4): 353-363.
|
[11] |
Meng D C, Wang Y, Wu L P, Shen R, Chen J C, Wu Q, Chen G Q. Production of poly (3-hydroxypropionate) and poly (3-hydroxybutyrate-co-3-hydroxypropionate) from glucose by engineering Escherichia coli [J]. Metab. Eng., 2015, 29: 189-195.
|
[12] |
Jari M, Khatami S R, Galehdari H, Shafiei M. Cloning and expression of poly 3-hydroxybutyrate operon into Escherichia coli [J]. Jundishapur Journal of Microbiology, 2015, 8(2): e16318.
|
[13] |
Nahvi A, Sudarsan N, Ebert M S, Zou X, Brown K L, Breaker R R. Genetic control by a metabolite binding mRNA [J]. ChemBiol., 2002, 9(9): 1043.
|
[14] |
Winkler W C, Cohen-Chalamish S, Breaker R R. An mRNA structure that controls gene expression by binding FMN [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 15908-15913.
|
[15] |
Mironov A S, Gusarov I, Rafikov R, Lopez L E, Shatalin K, Kreneva R A, Perumov D A, Nudler E. Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria [J]. Cell, 2002, 111: 747-756.
|
[16] |
Breaker R R. Prospects for riboswitch discovery and analysis [J]. Molecular Cell, 2011, 43(6): 867-879.
|
[17] |
Dann C E 3rd, Wakeman C A, Sieling C L, Baker S C, Irnov I, Winkler W C. Structure and mechanism of a metal-sensing regulatory RNA [J]. Cell, 2007, 130(5): 878-892.
|
[18] |
Ramesh A, Winkler W C. Magnesium-sensing riboswitches in bacteria [J]. Journal of RNA Biol., 2010, 7: 77-83.
|
[19] |
Chawla M, Credendino R, Poater A, Oliva R, Cavallo L. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site [J]. J. Am. Chem. Soc., 2015, 137(1): 299-306.
|
[20] |
Furukawa K, Ramesh A, Zhou Z Y, Weinberg Z, Vallery T, Wade W C, Breaker R R. Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters [J]. Molecular Cell, 2015, 57(6): 1088-1098.
|
[21] |
McCown P J, Winkler W C, Breaker R R. Mechanism and distribution of glmS ribozymes [J]. Methods. Mol. Biol., 2012, 848: 113-129.
|
[22] |
Soukup J K. The structural and functional uniqueness of the glmS ribozyme [J]. Catalytic Rna., 2013, 120: 173-193.
|
[23] |
Mandal M, Lee M, Barrick J E, Weinberg Z, Emilsson G M, Ruzzo W L, Breaker R R. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. [J]. Science, 2004, 306(5694): 275-279.
|
[24] |
Mellin J R, Pascale Cossart. Unexpected versatility in bacterial riboswitches [J]. Trends in Genetics, 2015, 31(3): 150-156.
|
[25] |
Wilson-Mitchell S N, Grundy F J, Henkin T M. Analysis of lysine recognition and specificity of the Bacillus subtilis L box riboswitch [J]. Nucleic Acids Res., 2012, 40(12): 5706-5717.
|
[26] |
Furukawa K, Gu H, Sudarsan N, Hayakawa Y, Hyodo M, Breaker R R. Identification of ligand analogues that control c-di-GMP riboswitches [J]. ACS Chem. Biol., 2012, 7(8): 1436-1443.
|
[27] |
Sudarsan N, Lee E R, Weinberg Z, Moy R H, Kim J N, Link K H, Breaker R R. Riboswitches in eubacteria sense the second messenger cyclic di-GMP [J]. Science, 2008, 321: 411-413.
|
[28] |
Lee E R, Baker J L, Weinberg Z, Sudarsan N, Breaker R. An allosteric self-splicing ribozyme triggered by a bacterial second messenger [J]. Science, 2010, 329(5993): 845-848.
|
[29] |
Wachsmuth M, Findeiss S, Weissheimer N, Stadler P F, Mörl M. De novo design of a synthetic riboswitch that regulates transcription termination [J]. Nucleic Acids Res., 2013, 41(4): 2541-2551.
|
[30] |
Desai S K, Gallivan J P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation [J]. Journal of the American Chemical Society, 2004, 126(41): 13247-13254.
|
[31] |
Tang J, Breaker R R. Rational design of allosteric ribozymes [J]. Chemistry & Biology, 1997, 4(6): 453-459.
|
[32] |
Zhou L B, Zeng A P. Exploring lysine riboswitch for metabolic flux control and improvement of L-lysine synthesis in Corynebacterium glutamicum [J]. ACS Synth. Biol., 2015, 4(6): 729-734.
|
[33] |
Yang J, Seo S W, Jang S, Shin S I, Lim C H, Roh T Y, Jung G Y. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes [J]. Nat. Commun., 2013, 4: 1413.
|
[34] |
Muranaka N, Sharma V, Nomura Y, Yokobayashi Y. An efficient platform for genetic selection and screening of gene switches in Escherichia coli [J]. Nucleic Acids Res., 2009, 37(5): e39.
|
[35] |
Cimdins A, Klinkert B, Aschke-Sonnenborn U, Kaiser F M, Kortmann J, Narberhaus F. Translational control of small heat shock genes in mesophilic and Thermophilic cyanobacteria by RNA thermometers [J]. RNA Biol., 2014, 11(5): 594-608.
|
[36] |
Deigan K E, Ferré-D'Amaré A R. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs [J]. Accounts of Chemical Research, 2011, 44(12): 1329-1338.
|
[37] |
Li L. The biochemistry and physiology of metallic fluoride: action, mechanism, and implications [J]. Critical Reviews in Oral Biology & Medicine, 2003, 14(2): 100-114.
|
[38] |
Barbier O, Arreola-Mendoza L, Del Razo L M. Molecular mechanisms of fluoride toxicity [J]. Chem. Biol. Interact., 2010, 188(2): 319-333.
|
[39] |
Nelson J W, Zhou Z, Breaker R R. Gramicidin D enhances the antibacterial activity of fluoride [J]. Bioorg. Med. Chem. Lett., 2014, 24(13): 2969-2971.
|
[40] |
Fei X, Holmes T, Diddle J, Hintz L, Delaney D, Stock A, Renner D, McDevitt M, Berkowitz D B, Soukup J K. Phosphatase-inert glucosamine 6-phosphate mimics serve as actuators of the glmS riboswitch [J]. ACS Chem. Biol., 2014, 9(12): 2875-2882.
|
[41] |
Bren A, Eisenbach M. How signals are heard during bacterial chemo taxis: protein-protein interactions in sensory signal propagation [J]. J. Bacteriol., 2000, 182(24): 6865-6873.
|
[42] |
Topp S, Gallivan J P. Guiding bacteria with small molecules and RNA [J]. J. Am. Chem. Soc., 2007, 129(21): 6807-6811.
|
[43] |
Joshua K Michener, Christina D Smolke. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch [J]. Metabolic Engineering, 2012, 14(4): 306-316.
|
[44] |
Zhu X, Wang X, Zhang C, Wang X, Gu Q. A riboswitch sensor to determine vitamin B12 in fermented foods [J]. Journal of Food Chem., 2015, 15(175): 523-528.
|
[45] |
Knudsen S M, Lee J, Ellington A D, Savran C A. Ribozyme-mediated signal augmentation on a aass-sensitive biosenser [J].J. Am. Chem. Soc., 2006, 128(50): 15936-15937.
|
[46] |
Paige J S, Wu K Y, Jaffrey S R. RNA mimics of green fluorescent protein [J]. Science, 2011, 333(6042): 642-646.
|
[47] |
Kellenberger C A, Wilson S C, Sales-Lee J, Hammond M C. RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP [J]. J. Am. Chem. Soc., 2013, 135(13): 4906-4909.
|
[48] |
Strack R L, Jaffrey S R. New approaches for sensing metabolites and proteins in live cells using RNA [J]. Curr. Opin. Chem. Biol., 2013, 17(4): 651-655.
|
[49] |
Nahvi A, Sudarsan N, Ebert M S, Zou X, Brown K L, Breaker R R. Genetic control by a metabolite binding mRNA [J]. Chem. Biol., 2002, 9(9): 1043-1049.
|