化工学报 ›› 2015, Vol. 66 ›› Issue (9): 3444-3455.doi: 10.11949/j.issn.0438-1157.20150751

• 催化、动力学与反应器 • 上一篇    下一篇

MnOx助剂对Fe/SiO2催化剂费-托合成制低碳烯烃动力学的影响

戴薇薇, 刘达, 付东龙, 张征湃, 张俊, 徐晶, 韩一帆   

  1. 华东理工大学化学工程联合国家重点实验室, 上海 200237
  • 收稿日期:2015-06-01 修回日期:2015-07-06 出版日期:2015-09-05 发布日期:2015-09-05
  • 通讯作者: 韩一帆 E-mail:yifanhan@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(21273070)。

Kinetics study of Fischer-Tropsch reaction to lower olefins over MnOx-promoted Fe/SiO2 catalysts

DAI Weiwei, LIU Da, FU Donglong, ZHANG Zhengpai, ZHANG Jun, XU Jing, HAN Yifan   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2015-06-01 Revised:2015-07-06 Published:2015-09-05 Online:2015-09-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21273070).

摘要:

探讨了MnOx助剂对Fe/SiO2催化剂经由费-托反应(Fischer-Tropsch)制备低碳烯烃(FTO)的影响。通过浸渍法制备了Fe20/SiO2和Fe20-Mn1.0/SiO2催化剂,结果表明MnOx助剂显著提升了CO转化率和C2~C4烯烃的时空收率。程序升温吸附实验表明MnOx助剂增加了Fe基催化剂表面碱性,促进了CO的解离吸附。运用幂指数模型,研究了Fe20/SiO2和Fe20-Mn1.0/SiO2催化剂上FTO反应动力学,得到了各产物生成活化能与H2/CO反应级数。最后,结合动力学研究与程序升温表征结果,对Fe基催化剂FTO反应机理,尤其是MnOx助剂提高Fe20/SiO2催化剂上低碳烯烃选择性的作用进行了讨论。

关键词: 低碳烯烃, 动力学, 铁基催化剂, 锰助剂, 合成气, 加氢

Abstract:

The promotional effects of MnOx on the synthesis of lower olefins via Fischer-Tropsch reaction over Fe/SiO2 catalysts were investigated. It was found that CO conversion and STY(space time yield) of C2-C4 olefins was greatly enhanced with the addition of MnOx. CO2-TPD and CO-TPD (temperature program desorption) have evidenced that MnOx could enhance the surface basicity of Fe-based catalyst. The intrinsic kinetics for Fischer-Tropschto reaction to lower olefins (FTO) was measured under the realistic reaction conditions over Fe/SiO2 catalysts with and without MnOx by fitting power-law model. The apparent activation energies and reaction orders were calculated based on the formation of products and CO conversion. With combination of kinetics and temperature-programmed techniques, it was found that the MnOx promoter can enhance the dissociation of CO and inhibite the readsorption of lower olefins, leading to the enhancement of STY and the selectivity to lower olefins. Finally, the FTO reaction mechanisms of Fe-based catalysts, especially, the promotional effects of MnOx on Fe/SiO2 for the production of lower olefins, were speculated.

Key words: lower olefins, intrinsic kinetics, Fe-based catalysts, MnOx promoter, syngas, hydrogenation

中图分类号: 

  • TQ028.8
[1] Dong Li(董丽), Yang Xueping(杨学萍). New advances in direct production of light olefins from syngas [J]. Petrochemical Technology (石油化工), 2012, 41(10): 1201-1206.
[2] Fu D, Dai W, Xu X, et al. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy [J]. ChemCatChem, 2015,7(5): 752-756.
[3] Steynberg A, Dry M, Davis B, et al. Fischer-Tropsch reactors [J]. Studies in Surface Science and Catalysis, 2004, 152: 64-195.
[4] Davis B H. Fischer-Tropsch synthesis: comparison of performances of iron and cobalt catalysts [J]. Industrial & Engineering Chemistry Research, 2007, 46(26): 8938-8945.
[5] de Smit E, Weckhuysen B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour [J]. Chem. Soc. Rev., 2008, 37(12): 2758-2781.
[6] Torres Galvis H M, Bitter J H, Khare C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins [J]. Science, 2012, 335(6070): 835-838.
[7] Torres Galvis H M, de Jong K P. Catalysts for production of lower olefins from synthesis gas: a review [J]. ACS Catalysis, 2013, 3(9): 2130-2149.
[8] Luque R, de la Osa A R, Campelo J M, et al. Design and development of catalysts for biomass-to-liquid-Fischer-Tropsch (BTL-FT) processes for biofuels production [J]. Energy & Environmental Science, 2012, 5(1): 5186-5202.
[9] Das D, Ravichandran G, Chakrabarty D K. Conversion of syngas to light olefins over silicalite-1 supported iron and cobalt catalysts: effect of manganese addition [J]. Catalysis Today, 1997, 36(3): 285-293.
[10] Malessa R, Baerns M. Iron/manganese oxide catalysts for Fischer-Tropsch synthesis (Ⅳ): Activity and selectivity [J]. Industrial & Engineering Chemistry Research, 1988, 27(2): 279-283.
[11] Frossling N. The evaporation of falling drops [J]. Gerlande Beitr Geophys, 1938, 52: 170-216.
[12] Weisz P, Hicks J. The behaviour of porous catalyst particles in view of internal mass and heat diffusion effects [J]. Chemical Engineering Science, 1962, 17(4): 265-275.
[13] Su Junjie(苏俊杰), Mao Wei(茅威), Yang Zhen(杨震), Xu Jing(徐晶), Han Yifan(韩一帆). Kinetics of CoCu/SiO2 for synthesis of lower carbon mixed alcohols directly from syngas [J]. CIESC Journal(化工学报), 2014, 65(1): 143-151.
[14] Shroff M D, Kalakkad D S, Coulter K E, et al. Activation of precipitated iron Fischer-Tropsch synthesis catalysts [J]. Journal of Catalysis, 1995, 156(2): 185-207.
[15] Butt J. Carbide phases on iron-based Fischer-Tropsch synthesis catalysts (Ⅰ): Characterization studies [J]. Catalysis Letters, 1990, 7(1-4): 61-81.
[16] Kuivila C, Stair P, Butt J. Compositional aspects of iron Fischer-Tropsch catalysts: an XPS/reaction study [J]. Journal of Catalysis, 1989, 118(2): 299-311.
[17] Yang Z, Pan X, Wang J, et al. FeN particles confined inside CNT for light olefin synthesis from syngas: effects of Mn and K additives [J]. Catalysis Today, 2012, 186(1): 121-127.
[18] Fierro J L G. Cu-promoted Fe2O3/MgO-based Fischer-Tropsch catalysts of biomass-derived syngas [J]. Industrial & Engineering Chemistry Research, 2015, 54(3): 911-921
[19] Tang L, Song C, Li M, et al. Study of K/Mn-MgO supported Fe catalysts with Fe(CO)5 and Fe(NO3)3 as precursors for CO hydrogenation to light alkenes [J]. Chinese Journal of Chemistry, 2013, 31(10): 1263-1268.
[20] Jensen K, Massoth F. Studies on iron-manganese oxide carbon monoxide catalysts (Ⅱ): Carburization and catalytic activity [J]. Journal of Catalysis, 1985, 92(1): 109-118.
[21] Mei D, Rousseau R, Kathmann S M, et al. Ethanol synthesis from syngas over Rh-based/SiO2 catalysts: a combined experimental and theoretical modeling study [J]. Journal of Catalysis, 2010, 271(2): 325-342.
[22] Cheng J, Hu P, Ellis P, et al. A DFT study of the chain growth probability in Fischer-Tropsch synthesis [J]. Journal of Catalysis, 2008, 257(1): 221-228.
[23] Cheng J, Hu P, Ellis P, et al. A first-principles study of oxygenates on Co surfaces in Fischer-Tropsch synthesis [J]. The Journal of Physical Chemistry C, 2008, 112(25): 9464-9473.
[24] Cheng J, Hu P, Ellis P, et al. Some understanding of Fischer-Tropsch synthesis from density functional theory calculations [J]. Topics in Catalysis, 2010, 53(5/6): 326-337.
[25] Cheng J, Song T, Hu P, et al. A density functional theory study of the α-olefin selectivity in Fischer-Tropsch synthesis [J]. Journal of Catalysis, 2008, 255(1): 20-28.
[26] Dry M, Shingles T, Boshoff L. Rate of the Fischer-Tropsch reaction over iron catalysts [J]. Journal of Catalysis, 1972, 25(1): 99-104.
[27] Yang J, Liu Y, Chang J, et al. Detailed kinetics of Fischer-Tropsch synthesis on an industrial Fe-Mn catalyst [J]. Industrial & Engineering Chemistry Research, 2003, 42(21): 5066-5090.
[28] Ahón V R, Costa Jr E F, Monteagudo J E, et al. A comprehensive mathematical model for the Fischer-Tropsch synthesis in well-mixed slurry reactors[J]. Chemical Engineering Science, 2005, 60(3): 677-694.
[29] Tsubaki N, Yoshii K, Fujimoto K. Anti-ASF distribution of Fischer-Tropsch hydrocarbons in supercritical-phase reactions [J]. Journal of Catalysis, 2002, 207(2): 371-375.
[30] Govender N S, Botes F G, de Croon M H J M, et al. Mechanistic pathway for C2+ hydrocarbons over an Fe/K catalyst [J]. Journal of Catalysis, 2014, 312: 98-107.
[1] 刘洪超, 陈苏航, 段先力, 吴凡, 徐小飞, 宋先雨, 赵双良, 刘洪来. Janus石墨烯量子点在生物膜中的输运行为:分子动力学模拟[J]. 化工学报, 2022, 73(7): 2835-2843.
[2] 乃学瑛, 吴鹏, 程远, 肖剑飞, 刘鑫, 董亚萍. 水热生长碱式硫酸镁纳米线结晶动力学研究[J]. 化工学报, 2022, 73(7): 3038-3044.
[3] 张军, 胡升, 顾菁, 袁浩然, 陈勇. 甲醇体系电镀污泥衍生磁性多金属材料催化糠醛加氢转化[J]. 化工学报, 2022, 73(7): 2996-3006.
[4] 陈玉弓, 陈昊, 黄耀松. 基于分子反应动力学模拟的六甲基二硅氧烷热解机理研究[J]. 化工学报, 2022, 73(7): 2844-2857.
[5] 苏晨昱, 杨颖, 宋兴福. 岩盐矿提钾老卤中溴离子选择性电氧化过程研究[J]. 化工学报, 2022, 73(7): 3007-3017.
[6] 褚有群, 葛展榜, 焦玉峰, 张建平, 郭冠璇, 朱英红. 有机-水混合溶剂中氯离子对C—H键的电氧化腈化性能[J]. 化工学报, 2022, 73(7): 3018-3025.
[7] 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
[8] 罗佳, 吴双应, 肖兰, 周世耀, 陈志莉. 撞击速度对连续液滴撞击热圆柱壁面局部传热特性影响的实验[J]. 化工学报, 2022, 73(7): 2944-2951.
[9] 杨晖, 李宏泽, 陈泉, 郑泽希, 李然, 孙其诚. 从质量流向漏斗流转变过程中的动力学分析[J]. 化工学报, 2022, 73(6): 2722-2731.
[10] 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495.
[11] 陈泉, 郑泽希, 李然, 孙其诚, 杨晖. 散斑能见度光谱法测量筒仓内颗粒流的颗粒温度[J]. 化工学报, 2022, 73(6): 2603-2611.
[12] 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
[13] 王敏, 程金兰, 李鑫, 陆晶晶, 尹崇鑫, 戴红旗. 酸性助水溶剂脱除木质素机理分析[J]. 化工学报, 2022, 73(5): 2206-2221.
[14] 苏晓辉, 张弛, 徐志锋, 金辉, 王治国. 黏弹性表面活性剂溶液中颗粒沉降特性研究[J]. 化工学报, 2022, 73(5): 1974-1985.
[15] 成文凯, 张先明, 王嘉骏, 冯连芳. 卧式单轴捏合反应器流动与混合特性的数值模拟[J]. 化工学报, 2022, 73(5): 1995-2007.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!