化工学报 ›› 2016, Vol. 67 ›› Issue (2): 549-556.doi: 10.11949/j.issn.0438-1157.20151251

• 催化、动力学与反应器 • 上一篇    下一篇

载体碱性对Fe基催化剂费-托合成反应的影响

张俊, 张征湃, 苏俊杰, 付东龙, 戴薇薇, 刘达, 徐晶, 韩一帆   

  1. 华东理工大学化学工程联合国家重点实验室, 上海 200237
  • 收稿日期:2015-08-03 修回日期:2015-10-13 出版日期:2016-02-05 发布日期:2016-02-05
  • 通讯作者: 韩一帆 E-mail:yifanhan@ecust.edu.cn
  • 基金资助:

    国家自然科学基金项目(21273070,21576084)。

Effect of support basicity on iron-based catalysts for Fischer-Tropsch synthesis

ZHANG Jun, ZHANG Zhengpai, SU Junjie, FU Donglong, DAI Weiwei, LIU Da, XU Jing, HAN Yifan   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2015-08-03 Revised:2015-10-13 Published:2016-02-05 Online:2016-02-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21273070, 21576084).

摘要:

低碳烃类化合物是化学工业中重要的有机原料,通过非石油路线由费-托反应(Fischer-Tropsch)制备低碳烃类具有巨大前景,载体对于费-托合成催化剂的反应产物分布具有重要影响。探究了载体碱性对负载型Fe 基催化剂在费-托合成反应中反应性能的影响。通过浸渍法制备了Fe20/AlPO4、Fe20/γ-Al2O3、Fe20/MgAl2O4 催化剂,考评结果表明,载体碱性越强,碳链增长概率(α值)越大,C5+选择性上升,烯烷比(O/P)增加。通过Raman 光谱和TPH 实验对由柠檬酸铁铵为前体煅烧后的催化剂表层碳物种进行分析表明,载体碱性越强,催化剂表面碳石墨化程度越高,吸附碳数量越少。并依托XRD、H2-TPR、CO2-TPR 表征信息构建了不同碱性载体负载的Fe 基催化剂的构效关系,表明载体给电子能力的强弱引起催化剂表面碳物质含量和金属载体相互作用的差异,最终导致了催化活性和选择性的不同。

关键词: 费-托合成, 合成气, 催化, Fe 基催化剂, 催化剂载体, 碱性, 碳物种

Abstract:

Lower hydrocarbons are key building blocks in chemical industry. The Fischer-Tropsch synthesis has been considered as one of the most promising non-oil based routes for lower hydrocarbons production. Previous studies have demonstrated that the supports can greatly affect the product distribution. In this work, the effects of the base property of supports on the catalytic performance of different Fe-based catalysts (Fe20/AlPO4, Fe20/γ-Al2O3 and Fe20/MgAl2O4) were investigated. The results showed that, with the increase in support basicity, the chain growth probability (α value), the selectivity of C5+ hydrocarbons and the olefins/paraffin ratio increased. Moreover, by combining with the Raman and temperature programmed hydrogenation (TPH), it was found that the higher basicity of supports could lead to the less active carbon (absorptive and atomic carbon) and the more inactive carbon (graphitized carbon) formation. In addition, with the combination of other characterization, such as XRD, H2-TPR, CO2-TPR, the structure-performance relationship was constructed. The variation in electron-donating ability of the supports strongly affected the content of carbonaceous species on the catalyst surface and the metal-support interaction, thereby leading to the difference in catalytic activity and selectivity.

Key words: Fischer-Tropsch synthesis, syngas, catalysis, Fe-based catalysts, catalyst support, basicity, carbon specie

中图分类号: 

  • TQ018
[1] COMA A, MELO F V, SAUVANAUD L, et al. Light cracked naphtha processing:controlling chemistry for maximum propylene production[J]. Catalysis Today, 2005, 107-108:699-706.
[2] DIERCKS R, ARNDT J D, FREYER S, et al. Raw material changes in the chemical industry[J]. Chemical Engineering & Technology, 2008, 31(5):631-637.
[3] WANG S, ZHU Z H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation:a review[J]. Energy & Fuels, 2004, 18(4):1126-1139.
[4] 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1):3-8. DOI:10.3969/j.issn. 0438-1157. 2012.01.001. JIN Y, ZHOU Y C, HU S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1):3-8. DOI:10.3969/j.issn.0438-1157.2012.01.001.
[5] KUNKES E L, SIMONETTI D A, WEST R M, et al. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes[J]. Science, 2008, 322(5900):417-421.
[6] LI P, ZHANG W, HAN X, et al. Conversion of methanol to hydrocarbons over phosphorus-modified ZSM-5/ZSM-11 intergrowth zeolites[J]. Catalysis Letters, 2010, 134(1/2):124-130.
[7] DUPAIN X, KRUL R A, SCHAVERIEN C J, et al. Production of clean transportation fuels and lower olefins from Fischer-Tropsch synthesis waxes under fluid catalytic cracking conditions:the potential of highly paraffinic feedstocks for FCC[J]. Applied Catalysis B:Environmental, 2006, 63(3):277-295.
[8] GALVIS H M T, BITTER J H, Khare C B, et al. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science, 2012, 335(6070):835-838.
[9] TORRES GALVIS H M, DE JONG K P. Catalysts for production of lower olefins from synthesis gas:a review[J]. ACS Catalysis, 2013, 3(9):2130-2149.
[10] SUN B, YU G, LIN J, et al. A highly selective Raney Fe@HZSM-5 Fischer-Tropsch synthesis catalyst for gasoline production:one-pot synthesis and unexpected effect of zeolites[J]. Catalysis Science & Technology, 2012, 2(8):1625-1629.
[11] BARRAULT J, FORQUY C, MENEZO J C, et al. Hydrocondensation of CO2 (CO) over supported iron catalysts[J]. Reaction Kinetics and Catalysis Letters, 1981, 17(3/4):373-378.
[12] BUKUR D B, LANG X, MUKESH D, et al. Binder/support effects on the activity and selectivity of iron catalysts in the Fischer-Tropsch synthesis[J]. Industrial & Engineering Chemistry Research, 1990, 29(8):1588-1599.
[13] CUBEIRO M L, LóPEZ C M, COLMENARES A, et al. Use of aluminophosphate molecular sieves in CO hydrogenation[J]. Applied Catalysis A:General, 1998, 167(2):183-193.
[14] SOMMEN A P B, STOOP F, VAN DER WIELE K. Synthesis gas conversion on carbon supported iron catalysts and the nature of deactivation[J]. Applied Catalysis, 1985, 14:277-288.
[15] SUN P, SIDDIQI G, CHI M, et al. Synthesis and characterization of a new catalyst Pt/Mg(Ga)(Al)O for alkane dehydrogenation[J]. Journal of Catalysis, 2010, 274(2):192-199.
[16] MACHIDA M, MINAMI S, HINOKUMA S, et al. Unusual redox behavior of Rh/AlPO4 and its impact on three-way catalysis[J]. Journal of Physical Chemistry C, 2014, 119(1):373-380.
[17] ORDOMSKY V V, LEGRAS B, CHENG K, et al. The role of carbon atoms of supported iron carbides in Fischer-Tropsch synthesis[J]. Catalysis Science & Technology, 2015, 5(3):1433-1437.
[18] HERINGTON E F G. The Fischer-Tropsch synthesis considered as a polymerization reaction[J]. Chemistry & Industry, 1946, 65:346-347.
[19] ANDERSON R B, FRIEDEL R A, STORCH H H. Fischer-Tropsch reaction mechanism involving stepwise growth of carbon chain[J]. Journal of Chemical Physics, 1951, 19(3):313-319.
[20] DE S E. The renaissance of iron-based Fischer-Tropsch synthesis:on the multifaceted catalyst deactivation behaviour[J]. Chemical Society Reviews, 2008, 37(12):2758-2781.
[21] KUIVILA C S, STAIR P C, BUTT J B. Compositional aspects of iron Fischer-Tropsch catalysts:an XPS reaction study[J]. Journal of Catalysis, 1989, 118(2):299-311.
[22] XU K, SUN B, LIN J, et al. ε-Iron carbide as a low-temperature Fischer-Tropsch synthesis catalyst[J]. Nature Communications, 2014, 5:5783-5783.
[23] SHROFF M D, KALAKKAD D S, COULTER K E, et al. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. Journal of Catalysis, 1995, 156(2):185-207.
[24] YANG C, ZHAO H, HOU Y, et al. Fe5C2 nanoparticles:a facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. Journal of the American Chemical Society, 2012, 134(38):15814-15821.
[25] SUN B, LIN J, XU K, et al. Fischer-Tropsch synthesis over skeletal FeCe catalysts leached from rapidly quenched ternary Fe Ce Al alloys[J]. ChemCatChem, 2013, 5(12):3857-3865.
[26] JI M, CHEN G, WANG J, et al. Dehydrogenation of ethylbenzene to styrene with CO2 over iron oxide-based catalysts[J]. Catalysis Today, 2010, 158(3):464-469.
[27] 陈桂丽, 陈鑫, 王新葵,等. 铁系催化剂上乙苯与CO2 氧化脱氢反应[J]. 催化学报, 2009, 30(7):619-623. DOI:10.3321/j.issn:0253-9837.2009.07.007. CHEN G L, CHEN X, WANG X K, et al. Oxidative dehydrogenation of ethylbenzene with CO2 over iron oxide-based catalysts[J]. Chinese Journal of Catalysis, 2009, 30(7):619-623. DOI:10.3321/j.issn:0253-9837.2009.07.007.
[28] RAVAGNAN L, SIVIERO F, LENARDI C, et al. Cluster-beam deposition and in situ characterization of carbyne-rich carbon films[J]. Physical Review Letters, 2002, 89(28):287-291.
[29] TUINSTRA F, KOENIG J L. Raman spectrum of graphite[J]. Journal of Chemical Physics, 1970, 53(3):1126-1130.
[30] XU J, BARTHOLOMEW C H. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts[J]. Journal of Physical Chemistry B, 2005, 109(6):2392-2403.
[31] LU J, YANG L, XU B, et al. Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer-Tropsch catalysts for lower olefins[J]. ACS Catalysis, 2014, 4(2):613-621.
[32] GRACIA J M, PRINSLOO F F, Niemantsverdriet J W. Mars-van Krevelen-like mechanism of CO hydrogenation on an iron carbide surface[J]. Catalysis Letters, 2009, 133(3/4):257-261.ke Mechanism of CO Hydrogenation on an Iron Carbide Surface[J]. Catalysis Letters, 2009, 133(3-4):257-261.
[1] 王姝焱, 张瑞阳, 刘润, 刘凯, 周莹. Mn(BO22/BNO界面结构调控增强催化臭氧分解性能研究[J]. 化工学报, 2022, 73(7): 3193-3201.
[2] 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211.
[3] 周乐, 沈程凯, 吴超, 侯北平, 宋执环. 深度融合特征提取网络及其在化工过程软测量中的应用[J]. 化工学报, 2022, 73(7): 3156-3165.
[4] 陈永安, 周安宁, 李云龙, 石智伟, 贺新福, 焦卫红. 磁性MgFe2O4及其核壳催化剂制备与煤热解性能研究[J]. 化工学报, 2022, 73(7): 3026-3037.
[5] 陈昇, 王梦钶, 鲁波娜, 李秀峰, 刘岑凡, 刘梦溪, 范怡平, 卢春喜. 原料油汽化特性对催化裂化反应结焦过程影响的CFD模拟[J]. 化工学报, 2022, 73(7): 2982-2995.
[6] 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173.
[7] 张劢, 田瑶, 郭之旗, 王叶, 窦广进, 宋浩. 光催化-生物杂合系统设计优化用于燃料和化学品绿色合成[J]. 化工学报, 2022, 73(7): 2774-2789.
[8] 刘晓涯, 王金超, 刘莹, 马敬环. 水合肼制氢纳米催化剂改性制备及机理研究进展[J]. 化工学报, 2022, 73(7): 2819-2834.
[9] 张文静, 李静, 魏子栋. 介尺度视角下的电催化:从界面、隔膜到多孔电极[J]. 化工学报, 2022, 73(6): 2289-2305.
[10] 李丽媛, 王建强, 陈奕, 郭友娣, 周健, 刘志成, 王仰东, 谢在库. 甲醇制丙烯反应中ZSM-5分子筛催化剂积炭失活介尺度机制研究[J]. 化工学报, 2022, 73(6): 2669-2676.
[11] 孟博, 刘艳萍, 蒋新科, 韩一帆. Fe5C2-MnO x 尺度调控及催化合成气制烯烃性能研究[J]. 化工学报, 2022, 73(6): 2677-2689.
[12] 王婵, 肖国锡, 郭小雪, 徐人威, 岳源源, 鲍晓军. 基于介尺度结构解聚-重组装的Beta分子筛的绿色合成及应用[J]. 化工学报, 2022, 73(6): 2690-2697.
[13] 陆勇, 刘对平, 李晨阳, 周吉彬, 叶茂. 光纤内窥图像法测量MTO催化剂表观形貌及其积炭量的实验研究[J]. 化工学报, 2022, 73(6): 2662-2668.
[14] 石孝刚, 王成秀, 高金森, 蓝兴英. 提升管反应器介尺度结构影响规律的数值模拟研究[J]. 化工学报, 2022, 73(6): 2708-2721.
[15] 张红锐, 张田, 隆曦孜, 李先宁. 光催化与微生物燃料电池耦合对Cu-EDTA的降解特性[J]. 化工学报, 2022, 73(5): 2149-2157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!