化工学报 ›› 2016, Vol. 67 ›› Issue (1): 27-40.DOI: 10.11949/j.issn.0438-1157.20151113
汪勇, 邢卫红, 徐南平
收稿日期:
2015-07-11
修回日期:
2015-09-15
出版日期:
2016-01-05
发布日期:
2016-01-05
通讯作者:
汪勇
基金资助:
国家重点基础研究发展计划项目(2015CB655301);国家自然科学基金委重大项目(21450580);江苏省优势学科资助项目(PAPD)。
WANG Yong, XING Weihong, XU Nanping
Received:
2015-07-11
Revised:
2015-09-15
Online:
2016-01-05
Published:
2016-01-05
Supported by:
supported by the National Basic Research Program of China (2015CB655301), the National Natural Science Foundation of China (21450580) and the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
摘要:
为进一步提高膜分离过程的精度,同步提升选择性和渗透性,分离膜孔径均一化是必然途径,均孔膜因此应运而生。首先讨论了均孔膜概念及其结构特点。均孔膜是孔径均一、孔道形状一致且垂直贯穿整个分离层的分离膜。然后介绍了制备均孔结构的不同方法,探讨了这些方法的优势和固有缺陷。利用嵌段共聚物微相分离的特性,可获取规整排列的、孔径在10~50 nm范围内连续可调的均孔结构,具有方法简便、无须特殊设备、易于放大制备等突出优势,是最有可能实现规模化生产的均孔膜制备方法。着重介绍了两亲嵌段共聚物选择性溶胀成孔方法的原理及其在孔径和孔型调节(圆柱孔、槽形孔)、自发永久亲水和制备过程绿色少污染等方面的特点。最后,讨论了嵌段共聚物基均孔膜发展的瓶颈,并指出应加强在孔径小于10 nm的均孔膜、孔型调变和应用领域等方面的研究。认为均孔膜不仅是一种新结构的分离膜,更代表着膜分离的发展方向。
中图分类号:
汪勇, 邢卫红, 徐南平. 均孔膜[J]. 化工学报, 2016, 67(1): 27-40.
WANG Yong, XING Weihong, XU Nanping. Homoporous membranes[J]. CIESC Journal, 2016, 67(1): 27-40.
[1] | MULDER M. Basic Principles of Membrane Technology[M]. Norwell, MA: Kluwer Academic Publishers, 1998. |
[2] | STRIEMER C C, GABORSKI T R, MCGRATH J L, et al. Charge-and size-based separation of macromolecules using ultrathin silicon membranes [J]. Nature, 2007, 445: 749-753. |
[3] | 邢卫红, 汪勇, 陈日志, 等. 膜与膜反应器: 现状、挑战与机遇 [J]. 中国科学: 化学, 2014, 44(9): 1469-1480.XING W H, WANG Y, CHEN R Z, et al. Membranes and membrane reactors: state of the art, challenges, and opportunities [J]. Scientia Sinica Chimica, 2014, 44(9):1469-1480. |
[4] | WRIGHT D, RAJALINGAM B, KARP J M, et al. Reversibly sealable parylene membranes for cell and protein patterning [J]. J. Biomed. Mater. Res., Part A, 2008, 85: 530-538. |
[5] | FRYD M M, MASON T G. Advanced nanoemulsions [J]. Annu. Rev. Phys. Chem., 2012, 63: 493-518. |
[6] | YANG S Y, YANG J A, KIM E S, et al. Single-file diffusion of protein drugs through cylindrical nanochannels [J]. ACS Nano, 2010, 4: 3817-3822. |
[7] | WARKIANI M E, LOU C P, GONG H Q, et al. A high-flux isopore micro-fabricated membrane for effective concentration and recovering of waterborne pathogens [J]. Pathogens. Biomed. Microdevices, 2012, 14: 669-677. |
[8] | HOLM S H, BEECH J P, BARRETT M P, et al. Separation of parasites from human blood using deterministic lateral displacement [J]. Lab Chip, 2011, 11: 1326-1332. |
[9] | ROBESON L M. Correlation of separation factor versus permeability for polymeric membranes [J]. J. Membr. Sci., 1991, 62: 165-185. |
[10] | 汪勇. 基于两亲嵌段共聚物的均孔膜[C]//第八届全国膜与膜过程学术报告会论文摘要. 大连, 2013. WANG Y. Homoporous membranes based on amphiphilic block copolymers[C]//The 8th National Congress on Membranes and Membrane Processes. Dalian, 2013. |
[11] | WARKIANI M E, BHAGAT A S, KHOO B L, et al. Isoporous micro/nanoengineered membranes [J]. ACS Nano, 2013, 7: 1882-1904. |
[12] | TONG H D, JANSEN H V, GADGIL V J, et al. Silicon nitride nanosieve membrane [J]. Nano Lett., 2004, 4: 283-287. |
[13] | FURNEAUX R, RIGBY W, DAVIDSON A. The formation of controlled-porosity membranes from anodically oxidized aluminium [J]. Nature, 1989, 337: 147-149. |
[14] | THOMPSON G. Porous anodic alumina: fabrication, characterization and applications [J]. Thin Solid Films, 1997, 297: 192-201. |
[15] | MASUDA H, FUKUDA K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina [J]. Science, 1995, 268: 1466-1468. |
[16] | XU H, GEODEL W A. From particle-assisted wetting to thin free-standing porous membranes [J]. Angewandte Chemie-International Edition, 2003, 42: 4694-4696. |
[17] | GILLES W, MICHEL R, BERNARD F C. Self-organized honeycomb morphology of star-polymer polystyrene films [J]. Nature, 1994, 369: 387-389. |
[18] | KAI Z, XUE F, XIAO S, et al. Directional photomanipulation of breath figure arrays [J]. Angewandte Chemie International Edition, 2014, 53: 13789-13793. |
[19] | PIERRE E, LAURENT R, LAURENT B, et al. Recent advances in honeycomb-structured porous polymer films prepared via breath figures [J]. European Polymer Journal, 2012, 48: 1001-1025. |
[20] | LING S W, JUN L, BEI K, et al. Ordered microporous membranes templated by breath figures for size-selective separation [J]. Journal of the American Chemical Society, 2012, 134: 95-98. |
[21] | DU C, ZHANG A J, BAI H, et al. Robust microsieves with excellent solvent resistance: cross-linkage of perforated polymer films with honeycomb structure [J]. ACS Macro Lett., 2013, 2: 27-30. |
[22] | ZHAO K, FAN Y Q, XU N P. Preparation of three-dimensionally ordered macroporous SiO2 membranes with controllable pore size[J], Chemistry Letters, 2007, 36: 464-465. |
[23] | STAROSTA W, WAWSZCZAK D, SARTOWASK B, et al. Investigations of heavy ion tracks in polyethylene naphthalate films [J]. Radiat. Meas., 1999, 31: 149-152. |
[24] | APEL P. Track etching technique in membrane technology [J]. Radiation Measurements, 2001, 34: 559-566. |
[25] | STEMME G, KITTILSLAND G. New fluid filter structure in silicon fabricated using a delf-aligning technique [J]. Appl. Phys. Lett., 1988, 53: 1566-1568. |
[26] | KITTILSLAND G, STEMME G, NORDEN B A. Sub-micron particle filter in silicon [J]. Sens. Actuators, A, 1990, 23: 904-907. |
[27] | NOSHAY A, MCGRATH J E. Block Copolymers: Overview and Critical Survey[M]. New York: Academic Press, 1977. |
[28] | HADJICHRISTIDIS N, PISPAS S, FLOUDAS G. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications[M]. Wiley Com., 2003. |
[29] | PARK S, LEE D H, XU T, et al. Macroscopic 10-terabit-per-square-inch arrays from block copolymers with lateral order [J].Science, 2009, 323: 1030-1033. |
[30] | PHILLIP W A, O'NEILL B, HILLMYER M A. Self-assembled block copolymer thin films as water filtration membranes [J]. ACS Appl. Materials Interfaces, 2010, 2: 847-853. |
[31] | PHILLIP W A, HILLMYER M A, CUSSLER E L. Cylinder orientation mechanism in block copolymer thin films upon solvent evaporation [J]. Macromolecules, 2010, 43: 7763-7770. |
[32] | YANG S Y, RYU I, KIM H Y. Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses [J]. Advanced materials, 2006, 18: 709-712. |
[33] | JACKSON E A, HILLMYER M A. Nanoporous membranes derived from block copolymers: From drug delivery to water filtration [J]. ACS Nano, 2010, 4: 3548-3553. |
[34] | JEON G, YANG S Y, KIM J K. Functional nanoporous membranes for drug delivery [J]. Journal of Materials Chemistry, 2012, 22: 14814-14834. |
[35] | YANG S Y, SON S, JANG S. DNA-functionalized nanochannels for SNP detection [J]. Nano letters, 2011, 11: 1032-1035. |
[36] | PEINEMANN K V, ABETZ V, SIMON P F W. Asymmetric superstructure formed in a block copolymer via phase separation [J]. Nature Materials, 2007, 6: 992-996. |
[37] | JUNG A, RANGOU S, ABETZ V. Structure formation of integral asymmetric composite membranes of polystyrene-block-poly-(2-vinylpyridine) on a nonwoven [J]. Macromolecular Materials and Engineering, 2012, 297: 790-798. |
[38] | RANGOU S, BUHR K, ABETZ V. Self-organized isoporous membranes with tailored pore sizes [J]. Journal of Membrane Science, 2014, 451: 266-275. |
[39] | RADJABIAN M, ABETZ V. Tailored pore sizes in integral asymmetric membranes formed by blends of block copolymers [J]. Advanced Materials, 2015, 27: 352-355. |
[40] | KARUNAKARAN M, NUNES S P, QIU X, et al. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation [J]. Journal of Membrane Science, 2014, 453: 471-477. |
[41] | SCHACHER F, ULBRICHT M, MULLER A H E. Self-supporting, double stimuli-responsive porous membranes from polystyrene-block-poly (N,N-dimethylaminoethyl methacrylate) diblock copolymers [J]. Advanced Functional Materials, 2009, 19: 1040-1045. |
[42] | RADJABIAN M, KOLL J, ABETZ V. Hollowfiber spinning of block copolymers: influence of spinning conditions on morphological properties [J]. Polymer, 2013, 54: 1803-1812. |
[43] | ABETZ V. Isoporous block copolymer membranes [J]. Macromol. Rapid Commun., 2015, 36: 10-22. |
[44] | NUNES S P, SOUGRAT R, HOOGHAN B. Ultraporous films with uniform nanochannels by block copolymer micelles assembly [J]. Macromolecules, 2010, 43: 8079-8085. |
[45] | CLODT J I, FILIZ V, RANGOU S, et al. Double stimuli-responsive isoporous membranes via post-modification of pH-sensitive self-assembled diblock copolymer membranes [J]. Advanced Functional Materials, 2013, 23: 731-738. |
[46] | WANG Y, LI F. An emerging pore-making strategy: confined swelling-induced pore generation in block copolymer materials [J]. Advanced Materials, 2011, 23: 2134-2148. |
[47] | SOHN B H, YOO S I, SEO B W, et al. Nanopatterns by free-standing monolayer films of diblock copolymer micelles with in situ core-corona inversion [J]. J. Am. Chem. Soc., 2001, 123: 12734-12735. |
[48] | BOONTONGKONG Y, COHEN R E. Cavitated block copolymer micellar thin films: Lateral arrays of open nanoreactors [J]. Macromolecules, 2002, 35: 3647-3652. |
[49] | WANG Y, GÖSELE U, STEINHART M. Mesoporous block copolymer nanorods by swelling-induced morphology reconstruction [J]. Nano Letters, 2008, 8: 3548-3553. |
[50] | WANG Y, TONG L, STEINHART M. Swelling-induced morphology reconstruction in block copolymer nanorods: kinetics and impact of surface tension during solvent evaporation [J]. ACS Nano, 2011, 5: 1928-1938. |
[51] | CHEN Z, HE C, LI F. Responsive micellar films of amphiphilic block copolymer micelles: control on micelle opening and closing [J]. Langmuir, 2010, 26: 8869-8874. |
[52] | WANG Y, HE C, XING W. Nanoporous metal membranes with bicontinuous morphology from recyclable block copolymer templates [J]. Advanced Materials, 2010, 22: 2068-2072. |
[53] | XU T, STEVENS J, VILLA J A, et al. Block copolymer surface reconstuction: a reversible route to nanoporous films [J]. Advanced Functional Materials, 2003, 13: 698-702. |
[54] | GUARINI K W, BLACK C T, YEUNG S H I. Optimization of diblock copolymer thin film self assembly [J]. Advanced Materials, 2002, 14: 1290-1294. |
[55] | SON J G, BAE W K, KANG H. Placement control of nanomaterial arrays on the surface-reconstructed block copolymer thin films [J]. ACS Nano, 2009, 3: 3927-3934. |
[56] | WANG Z, YAO X, WANG Y. Swelling-induced mesoporous block copolymer membranes with intrinsically active surfaces for size-selective separation [J]. Journal of Materials Chemistry, 2012, 22: 20542-20548. |
[57] | YIN J, WANG Y. Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers [J]. ACS Nano, 2013, 7: 9961-9974. |
[58] | SUN W, WANG Z, WANG Y. Surface-active isoporous membranes nondestructively derived from perpendicularly aligned block copolymers for size-selective separation [J]. Journal of Membrane Science, 2014, 466: 229-237. |
[59] | HOLDICH R, KOSVINTSEV S, CUMMING I, et al. Pore design and engineering for filters and membranes [J]. Philosophical Transactions of the Royal Society of London, Series A, 2006, 364: 161-174. |
[60] | HANKS P L, FORSCHNER C A, LLOYD D R. Sieve mechanism estimations for microfiltration membranes with elliptical pores [J]. Journal of Membrane Science, 2008, 322: 91-97. |
[61] | BROMLEY A J, HOLDICH R G, CUMMING I W. Particulate fouling of surface microfilters with slotted and circular pore geometry [J]. Journal of Membrane Science, 2002, 196: 27-37. |
[62] | FISSELL W H, DUBNISHEV A, ELDRIDGE A N, et al. High-performance silicon nanopore hemofiltration membranes [J]. Journal of Membrane Science, 2009, 326: 58-63. |
[63] | BRANS G, VANDER S, SCHROEN C, et al. Optimization of the membrane and pore design for micro-machined membranes [J]. Journal of Membrane Science, 2006, 278: 239-250. |
[64] | CHANDLER M, ZYDNEY A. Effects of membrane pore geometry on fouling behavior during yeast cell microfiltration [J]. Journal of Membrane Science, 2006, 285: 334-342. |
[65] | KANANIA D M, FISSELL W H, ROYD S, et al. Permeability-selectivity analysis for ultrafiltration: effect of pore geometry [J]. Journal of Membrane Science, 2010, 349: 405-410. |
[66] | TONG H D, JANSEN H V, GADGIL V J, et al. Silicon nitride nanosieve membrane [J]. Nano Letters, 2004, 4: 283-287. |
[67] | GUO L M, WANG Y. Nanoslitting of phase-separated block copolymers by solvent swelling for membranes with ultrahigh flux and sharp selectivity [J]. Chemical Communications, 2014, 50: 12022-12025. |
[68] | ULLAH A, HOLDICH R G, NAEEM M A, et al. Stability and deformation of oil droplets during microfiltration on a slotted pore membrane [J]. Journal of Membrane Science, 2012, 401: 118-124. |
[69] | ULLAH A, HOLDICH R G, NAEEM M A, et al. Shear enhanced microfiltration and rejection of crude oil drops through a slotted pore membrane including migration velocities [J]. Journal of Membrane Science, 2012, 421: 69-74. |
[70] | ULLAH A, STAROV V M, NAEEM M A, et al. Separation and purification technology filtration of suspensions using slit pore membranes [J]. Separation and Purification Technology, 2013, 103: 180-186. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[6] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[12] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[13] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[14] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[15] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||