化工学报 ›› 2017, Vol. 68 ›› Issue (10): 3693-3707.DOI: 10.11949/j.issn.0438-1157.20170169
陈兆辉1,2, 高士秋1, 许光文1
收稿日期:
2017-02-22
修回日期:
2017-05-10
出版日期:
2017-10-05
发布日期:
2017-10-05
通讯作者:
高士秋,sqgao@ipe.ac.cn
基金资助:
国家重点研发计划项目(2016YFB0600304)。
CHEN Zhaohui1,2, GAO Shiqiu1, XU Guangwen1
Received:
2017-02-22
Revised:
2017-05-10
Online:
2017-10-05
Published:
2017-10-05
Supported by:
supported by the National Key Research and Development Program of China (2016YFB0600304).
摘要:
通过煤热解技术获取紧缺的油气资源是低阶煤清洁利用的有效途径之一。针对煤热解工艺存在焦油产率与品质难以控制以及焦油中粉尘含量高等关键技术问题,从煤的热解反应机理出发,详细探讨了热解挥发分二次反应的种类和发生条件以及影响热解过程的主要因素,结合煤热解技术应用,总结了逆向传热与传质所导致的挥发分气相二次反应是焦油产率下降的主要原因;同时,分析了热解过程中煤颗粒破碎机理以及煤热解过程中粉尘的主要来源。在前人研究结果的基础上,提出控制热解挥发分的流动方向从高温区向低温区流动、热解耦合气化以及耦合原位的焦油提质与除尘等方法可以调控煤热解过程,抑制重质焦油生成、提高焦油中轻质组分含量以及减少焦油中的含尘量,从而实现煤的定向热解。
中图分类号:
陈兆辉, 高士秋, 许光文. 煤热解过程分析与工艺调控方法[J]. 化工学报, 2017, 68(10): 3693-3707.
CHEN Zhaohui, GAO Shiqiu, XU Guangwen. Analysis and control methods of coal pyrolysis process[J]. CIESC Journal, 2017, 68(10): 3693-3707.
[1] | 王建国, 赵晓红. 低阶煤清洁高效梯级利用关键技术与示范[J]. 中国科学院院刊, 2012, 27(3):382-388. WANG J G, ZHAO X H. Demonstration of key technologies for clean and efficient utilization of low-rank coal[J]. Bulletin of the Chinese Academy of Sciences, 2012, 27(3):382-388. |
[2] | SASS A. Garrett' coal pyrolysis process[J]. Chemical Engineering Progress, 1974, 70(1):72-73. |
[3] | CORTEZ D H, 赵振本. 用多思科煤(Toscoal)工艺联产合成原油及电力[J]. 煤炭综合利用, 1982, 4:3-19. CORTEZ D H, ZHAO Z B. Co-production of syncrude and power using the Toscoal process[J]. Coal Conversion, 1982, 4:3-19. |
[4] | SHEARER H A. Coal gasification:the COED process plus char gasification[J]. Chemical Engineering Progress, 1973, 69(3):43-49. |
[5] | 李青松, 李如英, 马志远, 等. 美国LFC低阶煤提质联产油技术新进展[J]. 中国矿业, 2010, 19(12):82-87. LI Q S, LI R Y, MA Z Y, et al. New progress of the U.S. LFC technology of low rank coal upgrading with cogeneration of coal liquids[J]. China Mining Magazine, 2010, 19(12):82-87. |
[6] | SMITH I W. The conversion of brown coal to oil by flash pyrolysis[J]. Energy, 1986, 11:1217-1224. |
[7] | RAMMLER R W. The production of synthetic crude oil from oil sand by application of the Lurgi-Ruhrgas process[J]. The Canadian Journal of Chemical Engineering, 1970, 48:552-560. |
[8] | RAMMLER R W. Synthetic fuels from Lurgi coal pyrolysis[J]. Energy Progress, 1982, 2(2):121-129. |
[9] | 郭树才. 煤化工工艺学[M]. 2版. 北京:化学工业出版社, 2006:19-26. GUO S C. Chemical Technology of Coal[M]. 2nd ed. Beijing:Chemical Industry Press, 2006:19-26. |
[10] | 徐振刚. 日本的煤炭快速热解技术[J]. 洁净煤技术, 2001, 7(1):48-56. XU Z G. Development of coal flash pyrolysis process in Japan[J]. Clean Coal Technology, 2001, 7(1):48-56. |
[11] | 郭树才, 罗长齐, 张代佳, 等. 褐煤固体热载体干馏新技术工业性试验[J]. 大连理工大学学报, 1995, 35(1):46-50. GUO S C, LUO C Q, ZHANG D J, et al. Experiment in pilot plant of new technology for lignite retorting using solid heat carrier[J]. Journal of Dalian University of Technology, 1995, 35(1):46-50. |
[12] | 杜铭华, 戴和武, 俞珠峰. MRF年轻煤温和气化(热解)工艺[J]. 洁净煤技术, 1995, 2:30-33. DU M H, DAI H W, YU Z F. MRF mild gasification (pyrolysis) process for low ran coal[J]. Clean Coal Technology, 1995, 2:30-33. |
[13] | 白中华, 赵玉冰, 黄海东, 等. 中国褐煤提质技术现状及发展趋势[J]. 洁净煤技术, 2013, 19(6):25-29. BAI Z H, ZHAO Y B, HUANG H D, et al. Research status and prospect of lignite upgrading technology in China[J]. Clean Coal Technology, 2013, 19(6):25-29. |
[14] | PEI P, WANG Q C, WU D H. Application and research on regenerative high temperature air combustion technology on low-rank coal pyrolysis[J]. Applied Energy, 2015, 156:762-766. |
[15] | 岑可法, 方梦祥. 循环流化床热电气三联产装置研究[J]. 工程热物理学报, 1995, 16(4):499-502. CEN K F, FANG M X. Research on circulating fluidized bed gas steam electicity tri-generation system[J]. Journal of Engineering Thermophysics, 1995, 16(4):499-502. |
[16] | WANG J G, LÜ X S, YAO J Z, et al. Experimental study of coal topping process in a downer reactor[J]. Industrial & Engineering Chemistry Research, 2005, 44:463-470. |
[17] | QU X, LIANG P, WANG Z F, et al. Pilot development of polygeneration process of circulating fluidized bed combustion combined with coal pyrolysis[J]. Chemical Engineering & Technology, 2011, 34(1):61-68. |
[18] | FAN X X, LÜ Q G, NA Y J, et al. Experimental study on coal multi-generation in dual fluidized beds[J]. Journal of Thermal Science, 2007, 16(3):277-282. |
[19] | 温亮, 岑建孟, 石振晶, 等. 气化床炉温对热电气焦油多联产技术的影响[J]. 动力工程学报, 2009, 29(8):789-793. WEN L CEN J M, SHI Z J, et al. Effects of gasifier bed temperature on heat power gas tar poly-generation technology[J]. Journal of Chinese Society of Power Engineering, 2009, 29(8):789-793. |
[20] | HEEK K H V, HODEK W. Structure and pyrolysis behaviour of different coals and relevant model substances[J]. Fuel, 1994, 73(6):886-896 |
[21] | MIURA K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Processing Technology, 2000, 62:119-135 |
[22] | 刘振宇. 煤化学的前沿与挑战:结构与反应[J]. 中国科学:化学, 2014, 44:1431-1438. LIU Z Y. Advancement in coal chemistry:structure and reactivity[J]. Scientia Sinica Chimica, 2014, 44:1431-1438. |
[23] | OH M S, PETERS W A, HOWARD J B. An experimental and modeling study of softening coal pyrolysis[J]. AIChE J., 1989, 35:775-792. |
[24] | SOLOMON P R, SERIO M A, SUUBERG E M. Coal pyrolysis:experiments, kinetic rates and mechanisms[J]. Progress in Energy and Combustion Science, 1992, 18:133-220 |
[25] | FOWLER T G, BARTLE K D, KANDIYOTI R, et al. Pyrolysis of coals as a function of rank as studied by in situ electron spin resonance spectroscopy[J]. Carbon, 1989, 27:197-208. |
[26] | SERIO M A. Secondary reactions of tar in coal pyrolysis[D]. Massachusetts:Massachusetts Institute of Technology, 1977. |
[27] | KURAL O C. Coal:Resources, Properties, Utilization, Pollution[M]. Istanbul:Istanbul Technical University, 1994. |
[28] | PATTANOTAI T, WATANABE H, OKAZAKI K. Experimental investigation of intraparticle secondary reactions of tar during wood pyrolysis[J]. Fuel, 2013, 104:468-475. |
[29] | XU W C, TOMITA A. The effects of temperature and residence time on the secondary reactions of volatiles from coal pyrolysis[J]. Fuel Processing Technology, 1989, 21:25-37. |
[30] | LEBLANC J, QUANCI J, CASTALDI M J. Experimental investigation of reaction confinement effects on coke yield in coal pyrolysis[J]. Energy & Fuel, 2016, 30(8):6249-6256. |
[31] | 张盛诚, 何榕. 单颗粒煤粉热解时焦油的二次反应和扩散[J]. 清华大学学报(自然科学版), 2016, 56(6):605-610. ZHANG S C, HE R. Secondary reactions and diffusion of tar during single coal particle pyrolysis[J]. Journal of Tsinghua University (Science and Technology), 2016, 56(6):605-610. |
[32] | 陈昭睿, 王勤辉, 郭志航, 等. 热解气停留时间对典型烟煤热解产物的影响[J]. 热能动力工程, 2015, 30:756-761. CHEN S R, WANG Q H, GUO Z H, et al. Influence of the residence time of gases pyrolyzed on pyrolytic products of typical bituminous coal[J]. Journal of Engineering for Thermal Energy and Power, 2015, 30:756-761. |
[33] | HAYASHI J, NAKAGAWA K, KUSAKABE K, et al. Change in molecular structure of flash pyrolysis tar by secondary reaction in a fluidized bed reactor[J]. Fuel Processing Technology, 1992, 30:237-248. |
[34] | KATHEKLAKIS I E, LU S L, KEITH D B. Effect of freeboard residence time on the molecular mass distributions of fluidized bed pyrolysis tars[J]. Fuel, 1990, 62:172-176. |
[35] | SERIO M A, PETERS W A, HOWARD J B. Kinetics of vapor-phase secondary reactions of prompt coal pyrolysis tars[J]. Industrial & Engineering Chemistry Research, 1987, 26(9):1831-1838. |
[36] | BERNHARDT R S, LADNER W R, NEWMAN JOHN O H, et al. Thermal cracking of coal-derived materials to BTX and ethylene[J]. Fuel, 1981, 60:139-144. |
[37] | WEN C Y, LEE E S, DUTTA S. Coal Conversion Technology[M]. Bonwick:Addison-Wesley, 1979. |
[38] | LIU Z Y, GUO X J, SHI L, et al. Reaction of volatiles-Acrucial step in pyrolysis of coals[J]. Fuel, 2015, 154:361-369. |
[39] | 刘振宇. 煤快速热解制油技术问题的化学反应工程根源:逆向传热与传质[J]. 化工学报, 2016, 67(1):1-5. LIU Z Y. Origin of common problems in fast coalpyrolysis technologies for tar:the countercurrent flow of heat and volatiles[J]. CIESC Journal, 2016, 67(1):1-5 |
[40] | BORAH R C, GHOSH P, RAO P G. A review on devolatilization of coal in fluidized bed[J]. International Journal of Energy Research, 2011, 35:929-963. |
[41] | SUUBERG E M, PETERS W A, HOWARD J B. Product compositions and formation kinetics in rapid pyrolysis of pulverized coal-implications for combustion[R]. Leeds:Proceedings of the Combustion Institute, 1979:117-130. |
[42] | LADNER W R. The products of coal pyrolysis:properties, conversion and reactivity[J]. Fuel Processing Technology, 1988, 20:207-222. |
[43] | GOKHALE A J, VASUDEVAN T V, MAHALINGAM R. Parametric studies on devolatilization of a subbituminous coal in a reactive gas environment[J]. Fuel, 1986, 65:1670-1676. |
[44] | SMOOT L D, SMITH P J. Coal Combustion and Gasification[M]. New York:Plenum Press, 1985. |
[45] | SUUBERG E M. Rapid pyrolysis and hydropyrolysis of coal[D]. Massachusetts:Massachusetts Institute of Technology, 1977. |
[46] | LUO K, ZHANG C, ZHU S H, et al. Tar formation during coal pyrolysis under N2 and CO2 atmospheres at elevated pressures[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118:130-135. |
[47] | JÜNTGEN H. Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal[J]. Fuel, 1984, 63(6):731-737. |
[48] | WANG P F, JIN L J, LIU J H, et al. Analysis of coal tar derived from pyrolysis at different atmospheres[J]. Fuel, 2013, 104:14-21. |
[49] | CYPRÈS R, FURFARI S. Fixed-bed pyrolysis of coal under hydrogen pressure at low heating rates[J]. Fuel, 1981, 60(9):768-778. |
[50] | ARENDT P, HEEK VAN K H. Comparative investigations of coal pyrolysis under inert gas and H2 at low and high heating rates and pressures up to 10 MPa[J]. Fuel, 1981, 60:779-787. |
[51] | ZHONG M, ZHANG Z K, ZHOU Q, et al. Continuous high-temperature fluidized bed pyrolysis of coal in complex atmospheres:product distribution and pyrolysis gas[J]. Journal of Analytical and Applied Pyrolysis, 2012, 97:123-129. |
[52] | TYLER R J. Flash pyrolysis of coals (1):Devolatilization of a Victorian brown coal in a small fluidized-bed reactor[J]. Fuel, 1979, 58(9):680-686. |
[53] | TAKARADA T, ONOYAMA Y, TAKAYAMA K, et al. Hydropyrolysis of coal in a pressurized powder-particle fluidized bed using several catalysts[J]. Catalysis Today, 1997, 39:127-136. |
[54] | XU W C, MATSUOKA K, AKIHO H, et al. High pressure hydropyrolysis of coals by using a continuous free-fall reactor[J]. Fuel, 2003, 82(6):677-685. |
[55] | GROWCOCK F B, MACKENZIE D R. Rapid hydrogenation of a North Dakota lignite[J]. Fuel, 1976, 55(4):349-354. |
[56] | MA Z H, ZHU Z B, ZHANG C F, et al. Flash hydropyrolysis of Zalannoer lignite[J]. Fuel Processing Technology, 1994, 38(2):99-109. |
[57] | GUELL A J, KANDIYOTI R. Development of a gas-sweep facility for the direct capture of pyrolysis tars in a variable heating rate high-pressure wire-mesh reactor[J]. Energy & Fuel, 1993, 7(6):943-952. |
[58] | 高松平, 王建飞, 赵建涛, 等. H2气氛下褐煤快速热解过程中CH4逸出规律的分析[J]. 燃料化学学报, 2014, 43(5):537-545. GAO S P, WANG J F, ZHAO J T, et al. Analysis of CH4 evolution in fast pyrolysis of lignite under H2 atmosphere[J]. Journal of Fuel Chemistry and Technology, 2014, 43(5):537-545. |
[59] | 白宗庆, 李文, 尉迟唯, 等. 褐煤在合成气气氛下的低温热解及半焦燃烧特性[J]. 中国矿业大学学报, 2011, 40(5):726-732. BAI Z Q, LI W, YUCHI W, et al. Low temperature pyrolysis of lignite in the presence of syngas and combustion characteristics of derived char[J]. Journal of China University of Mining & Technology, 2011, 40(5):726-732. |
[60] | 廖洪强, 李保庆, 张碧江, 等. 煤-焦炉气共热解特性研究(Ⅳ):甲烷和一氧化碳对热解的影响[J]. 燃料化学学报, 1998, 26(1):13-17. LIAO H Q, LI B Q, ZHANG B J, et al. Co-pyrolysis of coal with coke-oven gas(Ⅳ):Influence of CH4 and CO on pyrolysis yields[J]. Journal of Fuel Chemistry and Technology, 1998, 26(1):13-17. |
[61] | GAO S P, WANG J F, WANG Z Q, et al. Effect of CO on the CH4 evolution during fast pyrolysis of lignite in reductive atmospheres[J]. Journal of Analytical and Applied Pyrolysis, 2014, 106:104-111. |
[62] | JAMIL K, HAYASHI J I, LI C Z. Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor[J]. Fuel, 2004, 83:833-843. |
[63] | GAO S P, ZHAO J T, WANG Z Q, et al. Effect of CO2 on pyrolysis behaviors of lignite[J]. Journal of Fuel Chemistry and Technology, 2013, 41(3):257-264. |
[64] | ZHANG X F, DONG L, ZHANG J W, et al. Coal pyrolysis in a fluidized bed reactor simulating the process conditions of coal topping in CFB boiler[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1):241-250. |
[65] | ZHONG M, ZHANG Z K, ZHOU Q, et al. Continuous high-temperature fluidized bed pyrolysis of coal in complex atmospheres:product distribution and pyrolysis gas[J]. Journal of Analytical and Applied Pyrolysis, 2012, 97:123-129. |
[66] | STEINBERG M. The flash hydropyrolysis and methanolysis of coal with hydrogen and methane[J]. International Journal of Hydrogen Energy, 1987, 12(4):251-266. |
[67] | SHARMA K D, SULIMMA A, HEEK V H K. Hydropyrolysis of coal in the presence of steam[J]. Fuel, 1986, 65(11):1571-1574. |
[68] | MINKOVA V, RAZVIGOROVA M, GORANOVA M. Effect of water vapour on the pyrolysis of solid fuels (Ⅰ):Effect of water vapour during the pyrolysis of solid fuels on the yield and composition of the liquid products[J]. Fuel, 1991, 70(6):713-719. |
[69] | PALMER T J, VAHRMAN M. The smaller molecules obtainable from coal and their significance(Ⅲ):Steaming/carbonization of a weakly-caking coal at temperatures up to 600℃[J]. Fuel, 1972, 51:14-21. |
[70] | FIDALGO B, NIEKERK VAN D, MILLAN M. The effect of syngas on tar quality and quantity in pyrolysis of a typical South African inertinite-rich coal[J]. Fuel, 2014, 134:90-96. |
[71] | HAYASHI J I, TAKAHASHI H, IWATSUKI M, et al. Rapid conversion of tar and char from pyrolysis of a brown coal by reactions with steam in a drop-tube reactor[J]. Fuel, 2000, 79:439-447. |
[72] | SONG Y, WANG Y, HU X, et al. Effects of volatile-char interactions on in situ destruction of nascent tar during the pyrolysis and gasification of biomass(Ⅱ):Roles of steam[J]. Fuel, 2015, 143:555-562. |
[73] | BRAEKMAN-DANHEUX C, CYPRÈS R, FONTANA A, et al. Coal hydromethanolysis with coke-oven gas(Ⅰ):Influence of temperature on the pyrolysis yields[J]. Fuel, 1992, 71(3):251-255. |
[74] | LIAO H Q, LI B Q, ZHANG B J. Co-pyrolysis of coal with hydrogen-rich gases(Ⅰ):Coal pyrolysis under coke-oven gas and synthesis gas[J]. Fuel, 1998, 77(8):847-851. |
[75] | DONG C, JIN L J, LI Y, et al. Integrated process of coal pyrolysis with steam reforming of methane for improving the tar yield[J]. Energy & Fuels, 2014, 28(12):7377-7384. |
[76] | LIU J H, HU H Q, JIN L J, et al. Integrated coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst for improving tar yield[J]. Fuel Processing Technology, 2010, 91(4):419-423. |
[77] | JIN L J, ZHOU X, HE X F, et al. Integrated coal pyrolysis with methane aromatization over Mo/HZSM-5 for improving tar yield[J]. Fuel, 2013, 114:187-190. |
[78] | CHEN Z H, SHI Y, LAI D G, et al. Coal rapid pyrolysis in a transport bed under steam-containing syngas atmosphere relevant to the integrated fluidized bed gasification[J]. Fuel, 2016, 176:200-208. |
[79] | FRIEDEMANN J, WAGNER A, HEINZE A, et al. Direct optical observation of coal particle fragmentation behavior in a drop-tube reactor[J]. Fuel, 2016, 166:382-391. |
[80] | CHIRONE R, MASSIMILLA L. The application of Weibull theory to primary fragmentation of a coal during devolatilization[J]. Powder Technology, 1989, 57(3):197-212. |
[81] | DACOMBE P, POURKASHANIAN M, WILLIAMS A. Combustion-induced fragmentation behavior of isolated coal particles[J]. Fuel, 1999, 78(15):1847-1857. |
[82] | SREEKANTH M, BVSSS P, KOLAR A K, et al. Stresses in a cylindrical wood particle undergoing devolatilization in a hot bubbling fluidized bed[J]. Energy & Fuels, 2008, 2:1549-1559. |
[83] | SENNECA O, URCIUOLO M, CHIRONE R. A semidetailed model of primary fragmentation of coal[J]. Fuel, 2013, 104:253-261. |
[84] | PAPRIKA M J, KOMATINA M S, MLADENOVI? M R. Mechanism of primary fragmentation of coal in fluidized bed[J]. Thermal Science, 2016, 20:S125-S132. |
[85] | CUI T M, XU J L, FAN W K, et al. Experimental study on fragmental behavior of coals and biomasses during rapid pyrolysis[J]. Bioresource Technology, 2016, 222:439-447. |
[86] | 张生军, 郑化安, 陈静升, 等. 煤热解工艺中挥发分除尘技术的现状分析及建议[J]. 洁净煤技术, 2014, 20:79-83. ZHANG S J, ZHENG H A, CHEN J S, et al. Status analysis and improvement measures of volatile dust removal technology in coal pyrolysis process[J]. Clean Coal Technology, 2014, 20:79-83. |
[87] | 白效言, 裴贤丰, 张飏, 等. 小粒径低阶煤热解油尘分离问题分析[J]. 煤质技术, 2015, 6:1-4. BAI X Y, PEI X F, ZHANG Y, et al. Analysis on separation of tar and dust during pyrolysis of small-size low rank coal[J]. Coal Quality Technology, 2015, 6:1-4. |
[88] | 周琦. 低阶煤提质技术现状及完善途径[J]. 洁净煤技术, 2016, 2:23-30. ZHOU Q. Status and improvement approach of low rank coal upgrading technologies[J]. Clean Coal Technology, 2016, 2:23-30. |
[89] | 刘春雷, 甘晓雁. 低温热解工艺热解气含尘问题研究[J]. 煤炭加工与综合利用, 2016, 6:51-53. LIU C L, GAN X Y. Study on dust containing in pyrolytic gases during low temperature pyrolysis process[J]. Coal Processing and Comprehensive Utilization, 2016, 6:51-53. |
[90] | 张纯. 外热式内构件移动床低阶碎煤热解技术研究[D]. 北京:中国科学院过程工程研究所, 2015. ZHANG C. Pyrolysis of small-size low-rank coal in indirectly heated moving bed with internals[D]. Beijing:Institute of Process Engineering, Chinese Academy of Sciences, 2015. |
[91] | ZHANG Y M, WANG Y, CAI L G, et al. Dual bed pyrolysis gasification of coal:process analysis and pilot test[J]. Fuel, 2013, 112:624-634. |
[92] | COALCON process review:R & D interim report No. 3[R]. U.S. Department of Energy, 1978. |
[93] | 王占英. 煤加氢直接甲烷化产业化进展探究[J]. 中国新技术新产品, 2015, 2:50-52. WANG Z Y. Industrialization progress of coal hydrogasification for CH4 production[J]. China New Technologies and Products, 2015, 2:50-52. |
[94] | 王其成, 吴道洪. 无热载体蓄热式旋转床褐煤热解提质技术[J]. 煤炭加工与综合利用, 2014, 6:55-57. WANG Q C, WU D H. Free-heat carrier and regenerative rotating bed coal pyrolysis technology[J]. Coal Processing and Comprehensive Utilization, 2014, 6:55-57. |
[95] | LAI D G, CHEN Z H, LIN L X, et al. Secondary cracking and upgrading of shale oil from pyrolyzing oil shale over shale ash[J]. Energy & Fuels, 2015, 29(4):2219-2226. |
[96] | LAI D G, CHEN Z H, SHI Y, et al. Pyrolysis of oil shale by solid heat carrier in an innovative moving bed with internals[J]. Fuel, 2015, 159:943-951. |
[97] | LAI D G, SHI Y, GENG S L, et al. Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals[J]. Fuel, 2016, 173:138-145. |
[98] | ZHANG C, WU R C, XU G W. Coal pyrolysis for high-quality tar in a fixed-bed pyrolyzer enhanced with internals[J]. Energy & Fuels, 2014, 28(1):236-244. |
[99] | ZHANG C, WU R C, HU E F, et al. Coal pyrolysis for high-quality tar and gas in 100 kg fixed bed enhanced with internals[J]. Energy & Fuels, 2014, 28(11):7294-7302. |
[100] | LIN L X, ZHANG C, LI H J, et al. Pyrolysis in indirectly heated fixed bed with internals:the first application to oil shale[J]. Fuel Processing Technology, 2015, 138:147-155. |
[101] | LIN L X, LAI D G, GUO E W, et al. Oil shale pyrolysis in indirectly heated fixed bed with metallic plates of heating enhancement[J]. Fuel, 2016, 163:48-55. |
[102] | BUNT J R, WAANDERS F B. Identification of the reaction zones occurring in a commercial-scale Sasol-Lurgi FBDB gasifier[J]. Fuel, 2008, 87:1814-1823. |
[103] | YABE H, KAWAMURA T, KOZURU H, et al. Development of coal partial hydro-pyrolysis process[R]. NIPPON Steel Technical Report No.92, 2005:8-15. |
[104] | ZHOU Q, ZOU T, ZHONG M, et al. Lignite upgrading by multi-stage fluidized bed pyrolysis[J]. Fuel Processing Technology, 2013, 116:35-43. |
[105] | CHEN Z H, LAI D G, BAI L Q, et al. Methane-rich syngas production in an integrated fluidized bed by coupling pyrolysis and gasification of low-rank coal[J]. Fuel Processing Technology, 2015, 140:88-95. |
[106] | 陈兆辉, 敦启孟, 石勇, 等. 热解温度和反应气氛对输送床煤快速热解的影响[J]. 化工学报, 2017, 68(4):1566-1573. CHEN Z H, DUN Q M, SHI Y, et al. Effects of pyrolysis temperature and atmosphere on rapid coal pyrolysis in a transport bed reactor[J]. CIESC Journal, 2017, 68(4):1566-1573. |
[107] | 陈兆辉. 复合流化床低阶煤气化耦合热解制备富甲烷合成气和焦油[D]. 北京:中国科学院大学, 2016. CHEN Z H. Production of methane-rich syngas and tar from low-rank coals by coupling pyrolysis and gasification in an integrated fluidized bed[D]. Beijing:University of Chinese Academy of Sciences, 2016. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[10] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[11] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[12] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[13] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[14] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[15] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 802
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 926
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||