[1] |
HANSEN J, SATO M, RUEDY R, et al. Global temperature change[J]. Proceedings of the National Academy of Sciences, 2006, 103(39):14288-14293.
|
[2] |
天工. "十三五"天然气将成为我国能源转型的重要抓手[J]. 天然气工业, 2017, 37(4):149. TIAN G. Natural gas will be an important part of China's energy transformation in 13th five-year plan[J]. Natural Gas Industry, 2017, 37(4):149.
|
[3] |
国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2016:102-103. National Bureau of Statistics. China Statistical Yearbook[M]. Beijing:China Statistics Press, 2016:102-103.
|
[4] |
胡元, 罗永浩, 周力行, 等. 外二次旋流风对旋流煤粉燃烧及NO生成的影响[J]. 化工学报, 2010, 61(9):2437-2441. HU L Y, LUO Y H, ZHOU L X, et al. Effect of outer secondary air on swirling pulverized-coal combustion and NO formation[J]. CIESC Journal, 2010, 61(9):2437-2441.
|
[5] |
TI S, CHEN Z, KUANG M, et al. Numerical simulation of the combustion characteristics and NOx emission of a swirl burner:influence of the structure of the burner outlet[J]. Applied Thermal Engineering, 2016, 104:565-576.
|
[6] |
HOU S S, LEE C Y, LIN T H. Efficiency and emissions of a new domestic gas burner with a swirling flame[J]. Energy Conversion and Management, 2007, 48(5):1401-1410.
|
[7] |
SURJOSATYO A, PRIAMBODHO Y D, KWOK C K. Investigation of gas swirl burner characteristic on biomass gasification system using combustion unit equipment (CUE)[J]. Journal Mekanikal, 2011, 33(12):15-31.
|
[8] |
LEE C Y, BAEK S W. Effects of hybrid reburning/SNCR strategy on NOx/CO reduction and thermal characteristics in oxygen-enriched LPG flame[J]. Combustion Science and Technology, 2007, 179(8):1649-1666.
|
[9] |
AUDAI H A, JAMAL N, DAVID D. CFD modelling of air-fired and oxy-fuel combustion in a large-scale furnace at Loy Yang A brown coal power station[J]. Fuel, 2012, 102:646-665.
|
[10] |
刘皓, 任瑞琪, 黄永俊, 等. 富氧燃烧系统中NO的还原及其排放[J]. 化工学报, 2011, 62(2):495-501. LIU H, REN R Q, HUANG Y J, et al. Reduction and emission of NO in oxy-fuel system[J]. CIESC Journal, 2011, 62(2):495-501.
|
[11] |
YAMAMOTO T, SHIMODAIRA K, KROSAWA Y, et al. Investigations of a staged fuel nozzle for aero-engines by multi-sector combustor test[R]. ASME Paper GT2010-23206. 2010:961-973.
|
[12] |
BAI W, LI H, DENG L, et al. Air-staged combustion characteristics of pulverized coal under high temperature and strong reducing atmosphere conditions[J]. Energy & Fuels, 2014, 28(3):1820-1828.
|
[13] |
KIM H Y, BAEK S W. Experimental study of fuel-lean reburn system For NOx reduction and CO emission in oxygen-enhanced combustion[J]. International Journal of Energy Research, 2011, 35(8):710-720.
|
[14] |
SHIGERU T K S, TAKESHI Y, MITSUMASA M, et al. Experimental and numerical investigation of thermo-acoustic instability in a liquid-fuel aero-engine combustor at elevated pressure:validity of large-eddy simulation of spray combustion[J]. Combustion and Flame, 2015, 162(6):2621-2637.
|
[15] |
AKKERMAN V, LAW C K. Coupling of harmonic flow oscillations to combustion instability in premixed segments of triple flames[J]. Combustion & Flame, 2016, 172:342-348.
|
[16] |
CAO S, ZOU C, HAN Q, et al. Numerical and experimental studies of NO formation mechanisms under methane moderate or intense low-oxygen dilution(MILD) combustion without heated air[J]. Energy & Fuels, 2015, 29(3):1987-1996.
|
[17] |
MARDANI A, TABEJAMAAT S, HASSANPOUR S. Numerical study of CO and CO2 formation in CH4/H2 blended flame under MILD condition[J]. Combustion and Flame, 2013, 160(9):1639-1649.
|
[18] |
LI P, DALLY B B, MI J, et al. MILD oxy-combustion of gaseous fuels in a laboratory-scale furnace[J]. Combustion and Flame, 2013, 160(5):933-946.
|
[19] |
COGHE A, SOLERO G, SCRIBANO G. Recirculation phenomena in a natural gas swirl combustor[J]. Experimental Thermal and Fluid Science, 2004, 28(7):709-714.
|
[20] |
MORITZ S, CHRISTIAN O P, KILIAN O. Advanced identification of coherent structures in swirl-stabilized combustors[J]. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 2016, 139(2):021503.
|
[21] |
RUKES L, SIEBER M, PASCHEREIT C O, et al. Effect of initial vortex core size on the coherent structures in the swirling jet near field[J]. Exp. Fluids, 2015, 56(10):197.
|
[22] |
MAN Y K. Effect of swirl on gas-fired combustion behavior in a 3-D rectangular combustion chamber[J]. World Academy of Science Engineering & Technology, 2012, 6(4):797-802.
|
[23] |
OBERLEITHNER K, SCHIMEK S, PASCHEREIT C O. Shear flow instabilities in swirl-stabilized combustors and their impact on the amplitude dependent flame response:a linear stability analysis[J]. Combust. Flame, 2015, 162(1):86-99.
|
[24] |
REICHEL T G, TERHAAR S, PASCHEREIT O. Increasing flashback resistance in lean premixed swirl-stabilized hydrogen combustion by axial air injection[J]. ASME J. Eng. Gas Turbines Power, 2015, 137(7):071503.
|
[25] |
KWARK J H, JEONG Y K, JEON C H, et al. Effect of swirl intensity on the flow and combustion of a turbulent non-premixed flat flame[J]. Flow Turbulence and Combustion, 2004, 73(3/4):231-257.
|
[26] |
COGHE A, SOLERO G, SCRIBANO G. Recirculation phenomena in a natural gas swirl combustor[J]. Experimental Thermal and Fluid Science, 2004, 28(7):709-714.
|
[27] |
ILBAS M, KARYEYEN S, YILMAZ I. Effect of swirl number on combustion characteristics of hydrogen-containing fuels in a combustor[J]. International Journal of Hydrogen Energy, 2016, 41(17):7185-7191.
|
[28] |
KHANAFER K, AITHAL S M. Fluid-dynamic and NOx computation in swirl burners[J]. International Journal of Heat and Mass Transfer, 2011, 54(23/24):5030-5038.
|
[29] |
COZZI F, COGHE A. Effect of air staging on a coaxial swirled natural gas flame[J]. Experimental Thermal & Fluid Science, 2012, 43(11):32-39.
|
[30] |
MI J, LI P, ZHENG C. Numerical simulation of flameless premixed combustion with an annular nozzle in a recuperative furnace[J]. Chinese Journal of Chemical Engineering, 2010, 18(1):10-17.
|