[1] |
DUAN X, HE Y B, CUI Y J, et al. Highly selective separation of small hydrocarbons and carbon dioxide in a metal-organic framework with open copper(Ⅱ) coordination sites[J]. RSC Advances, 2014, 4(44):23058-23063.
|
[2] |
HE Y B, KRISHNA B, CHEN B L. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons[J]. Energy & Environmental Science, 2012, 5(10):9107-9120.
|
[3] |
DUAN X, ZHANG Q, CAI J F, et al. A new metal-organic framework with potential for adsorptive separation of methane from carbon dioxide, acetylene, ethylene, and ethane established by simulated breakthrough experiments[J]. Journal of Materials Chemistry A, 2014, 2(8):2628-2633.
|
[4] |
PLONKA A M, CHEN X Y, WANG H, et al. Light hydrocarbon adsorption mechanisms in two calcium-based microporous metal organic frameworks[J]. Chemistry of Materials, 2016, 28(6):1636-1646.
|
[5] |
HUANG L, CAO D P. Selective adsorption of olefin-paraffin on diamond-like frameworks:diamondyne and PAF-302[J]. Journal of Materials Chemistry A, 2013, 1(33):9433-9439.
|
[6] |
GEIER S J, MASON J A, BLOCH E D, et al. Selective adsorption of ethylene over ethane and propylene over propane in the metal-organic frameworks M2(dobdc) (M=Mg, Mn, Fe, Co, Ni, Zn)[J]. Chemical Science, 2013, 4(5):2054-2061.
|
[7] |
JIANG J W, SANDLER S I. Monte Carlo simulation for the adsorption and separation of linear and branched alkanes in IRMOF-1[J]. Langmuir, 2006, 22(13):5702-5707.
|
[8] |
沈文龙, 李嘉旭, 杨颖, 等. 基于沸石ZSM-5的CH4/N2/CO2二元体系吸附相平衡研究[J]. 化工学报, 2014, 65(9):3490-3498. SHEN W L, LI J X, YANG Y, et al. Binary adsorption equilibrium of CH4, N2 and CO2 on zeolite ZSM-5[J]. CIESC Journal, 2014, 65(9):3490-3498.
|
[9] |
李明, 涂适, 赵欣, 等. 真实吸附溶液理论预测CH4-C2H6在活性炭上的吸附平衡[J]. 化工学报, 2013, 64(11):4082-4089. LI M, TU S, ZHAO X, et al. Adsorption equilibrium prediction for CH4-C2H6 on activated carbon by real adsorption solution theory[J]. CIESC Journal, 2013, 64(11):4082-4089.
|
[10] |
HOWARTH A J, PETERS A W, VERMEULEN N A, et al. Best practices for the synthesis, activation, and characterization of metal-organic frameworks[J]. Chemistry of Materials, 2017, 29(1):26-39.
|
[11] |
HARTMANN M, BOHME U, HOVESTADT M, et al. Adsorptive separation of olefin/paraffin mixtures with ZIF-4[J]. Langmuir, 2015, 31(45):12382-12389.
|
[12] |
CAI J F, WANG H Z, WANG H L, et al. An amino-decorated NbO-type metal-organic framework for high C2H2 storage and selective CO2 capture[J]. RSC Advances, 2015, 5:77417-77422.
|
[13] |
ZOU R Y, REN X L, HUANG F, et al. A luminescent Zr-based metal-organic framework for sensing/capture of nitrobenzene and high-pressure separation of CH4/C2H6[J]. Journal of Materials Chemistry A, 2015, 3:23493-23500.
|
[14] |
XIA T F, CAI J F, WANG H Z, et al. Microporous metal-organic frameworks with suitable pore spaces for acetylene storage and purification[J]. Microporous and Mesoporous Materials, 2015, 215:109-115.
|
[15] |
LIU K, MA D X, LI B Y, et al. High storage capacity and separation selectivity for C2 hydrocarbons over methane in the metal-organic framework Cu-TDPAT[J]. Journal of Materials Chemistry A, 2014, 2(38):15823-15828.
|
[16] |
HE Y B, XIANG S C, ZHANG Z J, et al. A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas[J]. Chemical Communications, 2012, 48(88):10856-10858.
|
[17] |
HE Y B, ZHANG Z J, XIANG S C, et al. A microporous metal-organic framework for highly selective separation of acetylene, ethylene, and ethane from methane at room temperature[J]. Chemistry-A European Journal, 2012, 18(2):613-619.
|
[18] |
HE Y B, ZHANG Z J, XIANG S C, et al. High separation capacity and selectivity of C2 hydrocarbons over methane within a microporous metal-organic framework at room temperature[J]. Chemistry-A European Journal, 2012, 18(7):1901-1904.
|
[19] |
CHEN Y W, QIAO Z E, LV D F, et al. Selective adsorption of light alkanes on a highly robust indium based metal-organic framework[J]. Industrial & Engineering Chemistry Research, 2017, 56(15):4488-4495.
|
[20] |
PRASANTH K P, RALLAPALLI P, RAJ M C, et al. Enhanced hydrogen sorption in single walled carbon nanotube incorporated MIL-101 composite metal-organic framework[J]. International Journal of Hydrogen Energy, 2011, 36(13):7594-7601.
|
[21] |
ZHAO Y X, SEREDYCH M, ZHONG Q, et al. Aminated graphite oxides and their composites with copper-based metal-organic framework:in search for efficient media for CO2 sequestration[J]. RSC Advances, 2013, 3(25):9932-9941.
|
[22] |
KAYE S S, DAILLY A, YAGHI O M, et al. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5)[J]. Journal of the American Chemical Society, 2007, 129(46):14176-14177.
|
[23] |
SUN X J, XIA Q B, ZHAO Z X, et al. Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane[J]. Chemical Engineering Journal, 2014, 239:226-232.
|
[24] |
PETIT C, BURRESS J, BANDOSZ T J. The synthesis and characterization of copper-based metal-organic framework/graphite oxide composites[J]. Carbon, 2011, 49(2):563-572.
|
[25] |
AMELOOT R, LIEKENS A, ALAERTS L, et al. Silica-MOF composites as a stationary phase in liquid chromatography[J]. European Journal of Inorganic Chemistry, 2010, 24:3735-3738.
|
[26] |
SOMAYAJULU R P B, RAJ M C, PATIL D V, et al. Activated carbon@MIL-101(Cr):a potential metal-organic framework composite material for hydrogen storage[J]. International Journal of Energy Research, 2013, 37(3):746-753.
|
[27] |
LI Y J, MIAO J P, SUN X J, et al. Mechanochemical synthesis of Cu-BTC@GO with enhanced water stability and toluene adsorption capacity[J]. Chemical Engineering Journal, 2016, 298:191-197.
|
[28] |
CHEN B L, OCKWIG N W, MILLWARD A R, et al. High H2 adsorption in a microporous metal-organic framework with open metal sites[J]. Angewandte Chemie International Edition, 2005, 44(30):4745-4749.
|
[29] |
CHEN Y W, LV D F, WU J L, et al. A new MOF-505@GO composite with high selectivity for CO2/CH4 and CO2/N2 separation[J]. Chemical Engineering Journal, 2017, 308:1065-1072.
|
[30] |
KOVTYUKHOVA N I, OLLIVIER P J, MARTIN B R, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations[J]. Chemistry of Materials, 1999, 11(3):771-778.
|
[31] |
HSIAO M C, LIAO S H, YEN M Y, et al. Preparation of covalently functionalized graphene using residual oxygen-containing functional groups[J]. ACS Applied Materials and Interfaces, 2010, 2(11):3092-2099.
|
[32] |
MYERS A L, PRAUSNITZ J M. Thermodynamics of mixed-gas adsorption[J]. AIChE J., 1965, 11(1):121-127.
|
[33] |
WALTON K S, SHOLL D S. Predicting multicomponent adsorption:50 years of the ideal adsorbed solution theory[J]. AIChE J., 2015, 61(9):2757-2762.
|
[34] |
BLOCH E D, QUEEN W L, KRISHNA R, et al. Hydrocarbon separations in a metal-organic framework with open iron(Ⅱ) coordination sites[J]. Science, 2012, 335:1606.
|
[35] |
PIERS J, PINTO M L, SAINI V K. Ethane selective IRMOF-8 and its significance in ethane-ethylene separation by adsorption[J]. ACS Appl. Mater. Interfaces, 2014, 6:12093-12099.
|
[36] |
BANERJEE D, WANG H, PLONKA A M, et al. Direct structural identification of gas induced gate-opening coupled with commensurate adsorption in a microporous metal-organic framework[J]. Chem. Eur. J., 2016, 22:1-11.
|
[37] |
HE Y B, ZHANG Z J, XIANG S C, et al. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons[J]. Chem. Commun., 2012, 48:6493-6495.
|