[1] |
SIDNEY L, SRINIVASA S. High flow porous membranes for separating water from saline solutions:US3133132[P].1964.
|
[2] |
HICKENBOTTOM K L, VANNESTE J, ELIMELECH M, et al. Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis[J]. Desalination, 2016, 389:108-118.
|
[3] |
LOEB S, NORMAN R S. Osmotic power plants[J]. Science, 1975, 189(4203):654.
|
[4] |
YIP N Y, ELIMELECH M. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis[J]. Environmental Science & Technology, 2014, 48(18):11002-11012.
|
[5] |
THORSEN T, HOLT T. The potential for power production from salinity gradients by pressure retarded osmosis[J]. Journal of Membrane Science, 2009, 335(1/2):103-110.
|
[6] |
MCGINNIS R L, ELIMELECH M. Energy requirements of ammonia-carbon dioxide forward osmosis desalination[J]. Desalination, 2007, 207(1/2/3):370-382.
|
[7] |
SHAFFER D L, WERBER J R, JARAMILLO H, et al. Forward osmosis:Where are we now?[J]. Desalination, 2015, 356:271-284.
|
[8] |
CATH T Y, CHILDRESS A E, ELIMELECH M. Forward osmosis:principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2):70-87.
|
[9] |
CHEN G, WANG Z, LONG D N, et al. Treatment of shale gas drilling flowback fluids (SGDFs) by forward osmosis:membrane fouling and mitigation[J]. Desalination, 2015, 366:113-120.
|
[10] |
LI X M, ZHAO B, WANG Z, et al. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system[J]. Water Sci. Technol., 2014, 69(5):1036-1044.
|
[11] |
SHAFFER D L, ARIAS CHAVEZ L H, BEN-SASSON M, et al. Desalination and reuse of high-salinity shale gas produced water:drivers, technologies, and future directions[J]. Environmental Science & Technology, 2013, 47(17):9569-9583.
|
[12] |
VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134):1235009.
|
[13] |
LI X, HE T, DOU P, et al. Forward osmosis and forward osmosis membranes[M]//Comprehensive Membrane Science and Engineering. 2nd ed. Oxford:Elsevier, 2017:95-123.
|
[14] |
YIP N Y, TIRAFERRI A, PHILLIP W A, et al. High performance thin-film composite forward osmosis membrane[J]. Environmental Science & Technology, 2010, 44(10):3812-3818.
|
[15] |
WERBER J R, DESHMUKH A, ELIMELECH M. The critical need for increased selectivity, not increased water permeability, for desalination membranes[J]. Environmental Science & Technology Letters, 2016, 3(4):112-120.
|
[16] |
XIAO P, LI J, REN Y W, et al. A comprehensive study of factors affecting fouling behavior in forward osmosis[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016, 499:163-172.
|
[17] |
CHEN G, LIU R, SHON H K, et al. Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater[J]. Desalination, 2017, 405:76-84.
|
[18] |
SOLOMON M F J, BHOLE Y, LIVINGSTON A G. High flux membranes for organic solvent nanofiltration (OSN)-interfacial polymerization with solvent activation[J]. Journal of Membrane Science, 2012, 423:371-382.
|
[19] |
SOLOMON M F J, BHOLE Y, LIVINGSTON A G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)-interfacial polymerization, surface modification and solvent activation[J]. Journal of Membrane Science, 2013, 434(434):193-203.
|
[20] |
PARK M J, PHUNTSHO S, HE T, et al. Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes[J]. Journal of Membrane Science, 2015, 493:496-507.
|
[21] |
QIN D, LIU Z, SUN D D, et al. A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater[J]. Scientific Reports, 2015, 5:14530.
|
[22] |
WIDJOJO N, CHUNG T S, WEBER M, et al. A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO)[J]. Chemical Engineering Journal, 2013, 220:15-23.
|
[23] |
WEI J, LI Y, SETIAWAN L, et al. Influence of macromolecular additive on reinforced flat-sheet thin film composite pressure-retarded osmosis membranes[J]. Journal of Membrane Science, 2016, 511:54-64.
|
[24] |
WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5):16018.
|
[25] |
GAI J G, GONG X L. Zero internal concentration polarization FO membrane:functionalized graphene[J]. Journal of Materials Chemistry A, 2014, 2(2):425-429.
|
[26] |
TIRAFERRI A, KANG Y, GIANNELIS E P, et al. Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4(9):5044-5053.
|
[27] |
HEGAB H M, ELMEKAWY A, BARCLAY T G, et al. Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide:performance patterns and biofouling propensity[J]. ACS Applied Materials & Interfaces, 2015, 7(32):18004-18016.
|
[28] |
PERREAULT F, JARAMILLO H, XIE M, et al. Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes[J]. Environmental Science & Technology, 2016, 50(11):5840-5848.
|
[29] |
SOROUSH A, MA W, SILVINO Y, et al. Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets[J]. Environmental Science-Nano, 2015, 2(4):395-405.
|
[30] |
AZARI S, ZOU L. Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid L-cysteine[J]. Desalination, 2013, 324:79-86.
|
[31] |
LU X, ROMERO-VARGAS C S, SHAFFER D L, et al. In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance[J]. Environmental Science & Technology, 2013, 47(21):12219.
|
[32] |
SHAFFER D L, JARAMILLO H, LU X, et al. Post-fabrication modification of forward osmosis membranes with a poly(ethylene glycol) block copolymer for improved organic fouling resistance[J]. Journal of Membrane Science, 2015, 490:209-219.
|
[33] |
LIU C, LEE J, MA J, et al. Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer[J]. Environmental Science & Technology, 2017, 51(4):2161.
|
[34] |
PHUNTSHO S, HONG S, ELIMELECH M, et al. Forward osmosis desalination of brackish groundwater:meeting water quality requirements for fertigation by integrating nanofiltration[J]. Journal of Membrane Science, 2013, 436:1-15.
|
[35] |
PHUNTSHO S, HONG S, ELIMELECH M, et al. Forward osmosis desalination of brackish groundwater[J]. Journal of Membrane Science, 2013, 436(4):1-15.
|
[36] |
KIM J E, PHUNTSHO S, SHON H K. Pilot-scale nanofiltration system as post-treatment for fertilizer-drawn forward osmosis desalination for direct fertigation[J]. Desalination & Water Treatment, 2013, 51(31/32/33):6265-6273.
|
[37] |
PHUNTSHO S, SHON H K, MAJEED T, et al. Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination[J]. Environmental Science & Technology, 2012, 46(8):4567.
|
[38] |
KIM Y, CHEKLI L, SHIM W G, et al. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system[J]. Bioresource Technology, 2016, 210:26-34.
|
[39] |
PHUNTSHO S, KIM J E, JOHIR M A H, et al. Fertiliser drawn forward osmosis process:pilot-scale desalination of mine impaired water for fertigation[J]. Journal of Membrane Science, 2016, 508:22-31.
|
[40] |
PHUNTSHO S, SHON H K, HONG S, et al. Fertiliser drawn forward osmosis desalination:the concept, performance and limitations for fertigation[J]. Reviews in Environmental Science & Bio/technology, 2012, 11(2):147-168.
|
[41] |
MCCUTCHEON J R, ELIMELECH M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. Journal of Membrane Science, 2006, 284(1/2):237-247.
|
[42] |
MCGINNIS R L, HANCOCK N T, NOWOSIELSKI-SLEPOWRON M S, et al. Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines[J]. Desalination, 2013, 312:67-74.
|
[43] |
LI X M, XU G, LIU Y, et al. Magnetic Fe3O4 nanoparticles:synthesis and application in water treatment[J]. Nanoscience & Nanotechnology-Asia, 2011, 1:14-24.
|
[44] |
LING M M, CHUNG T S, LU X. Facile synthesis of thermosensitive magnetic nanoparticles as "smart" draw solutes in forward osmosis[J]. Chemical Communications, 2011, 47(38):10788-10790.
|
[45] |
ZHOU A J, LUO H Y, WANG Q, et al. Magnetic thermoresponsive ionic nanogels as novel draw agents in forward osmosis[J]. RSC Advances, 2015, 5(20):15359-15365.
|
[46] |
DEY P, IZAKE E L. Magnetic nanoparticles boosting the osmotic efficiency of a polymeric FO draw agent:effect of polymer conformation[J]. Desalination, 2015, 373:79-85.
|
[47] |
YANG H M, SEO B K, LEE K W, et al. Hyperbranched polyglycerol-coated magnetic nanoparticles as draw solute in forward osmosis[J]. Asian Journal of Chemistry, 2014, 26(13):4031-4034.
|
[48] |
LI D, ZHANG X, SIMON G P, et al. Forward osmosis desalination using polymer hydrogels as a draw agent:influence of draw agent, feed solution and membrane on process performance[J]. Water Research, 2013, 47(1):209-215.
|
[49] |
RAZMJOU A, SIMON G P, WANG H. Effect of particle size on the performance of forward osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent[J]. Chemical Engineering Journal, 2013, 215/216:913-920.
|
[50] |
GE Q, SU J, AMY G L, et al. Exploration of polyelectrolytes as draw solutes in forward osmosis processes[J]. Water Research, 2012, 46(4):1318-1326.
|
[51] |
OU R W, WANG Y Q, WANG H T, et al. Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process[J]. Desalination, 2013, 318:48-55.
|
[52] |
TIAN E L, HU C B, QIN Y, et al. A study of poly (sodium 4-styrenesulfonate) as draw solute in forward osmosis[J]. Desalination, 2015, 360:130-137.
|
[53] |
QI S R, LI Y, WANG R, et al. Towards improved separation performance using porous FO membranes:the critical roles of membrane separation properties and draw solution[J]. Journal of Membrane Science, 2016, 498:67-74.
|
[54] |
NGUYEN H T, NGUYEN N C, CHEN S S, et al. Innovation in draw solute for practical zero salt reverse in forward osmosis desalination[J]. Industrial & Engineering Chemistry Research, 2015, 54(23):6067-6074.
|
[55] |
ZHAO D L, WANG P, ZHAO Q P, et al. Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation[J]. Desalination, 2014, 348:26-32.
|
[56] |
STONE M L, RAE C, STEWART F F, et al. Switchable polarity solvents as draw solutes for forward osmosis[J]. Desalination, 2013, 312:124-129.
|
[57] |
MELCHELS F P, FEHR I, REITZ A S, et al. Initial design and physical characterization of a polymeric device for osmosis-driven delayed burst delivery of vaccines[J]. Biotechnology and Bioengineering, 2015, 112(9):1927-1935.
|
[58] |
CHEN G, WANG Z, LI X M, et al. Concentrating underground brine by FO process:influence of membrane types and spacer on membrane scaling[J]. Chemical Engineering Journal, 2016, 285:92-100.
|
[59] |
WANG W D, ZHANG Y T, ESPARRA-ALVARADO M, et al. Effects of pH and temperature on forward osmosis membrane flux using rainwater as the makeup for cooling water dilution[J]. Desalination, 2014, 351:70-76.
|
[60] |
ZHAO S, ZOU L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination[J]. Desalination, 2011, 278(1):157-164.
|
[61] |
BOO C, ELIMELECH M, HONG S. Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation[J]. Journal of Membrane Science, 2013, 444:148-156.
|
[62] |
YANGALI-QUINTANILLA V, LI Z, VALLADARES R, et al. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse[J]. Desalination, 2011, 280:160-166.
|
[63] |
BERKELAAR R P, DIETRICH E, KIP G A M, et al. Exposing nanobubble-like objects to a degassed environment[J]. Soft Matter, 2014, 10(27):4947-4955.
|
[64] |
CATH T Y. Osmotically and thermally driven membrane processes for enhancement of water recovery in desalination processes[J]. Desalination and Water Treatment 2010, 15: 279-286.
|
[65] |
WANG X H, CHANG V W C, TANG C Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation:advances, challenges, and prospects for the future[J]. Journal of Membrane Science, 2016, 504:113-132.
|
[66] |
HEY T, ZAREBSKA A, BAJRAKTARI N, et al. Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis[J]. Environ. Technol., 2017, 38(18):2295-2304.
|
[67] |
CHRISTOVA-BOAL D, EDEN R E, MCFARLANE S. An investigation into greywater reuse for urban residential properties[J]. Desalination, 1996, 106(1):391-397.
|
[68] |
LUO W, HAI F I, PRICE W E, et al. Evaluating ionic organic draw solutes in osmotic membrane bioreactors for water reuse[J]. Journal of Membrane Science, 2016, 514:636-645.
|
[69] |
LUO W, PHAN H V, XIE M, et al. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse:Biological stability, membrane fouling, and contaminant removal[J]. Water Research, 2017, 109:122-134.
|
[70] |
ANSARI A J, HAI F I, PRICE W E, et al. Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis[J]. Separation and Purification Technology, 2016, 163:1-7.
|
[71] |
ANSARI A J, HAI F I, PRICE W E, et al. Forward osmosis as a platform for resource recovery from municipal wastewater-a critical assessment of the literature[J]. Journal of Membrane Science, 2017, 529:195-206.
|
[72] |
DESJARDINS J. All U.S. energy consumption in a giant diagram[EB/OL].[2017-08-28]. http://www.visualcapitalist.com/u-s-energy-consumption-one-giant-diagram/.
|
[73] |
STRAUB A P, DESHMUKH A, ELIMELECH M. Pressure-retarded osmosis for power generation from salinity gradients:is it viable?[J]. Energy & Environmental Science, 2016, 9(1):31-48.
|
[74] |
LOGAN B E, ELIMELECH M. Membrane-based processes for sustainable power generation using water[J]. Nature, 2012, 488(7411):313-319.
|