化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4918-4928.DOI: 10.11949/j.issn.0438-1157.20180550
• 材料化学工程与纳米技术 • 上一篇
李阳1, 杜乐1,2, 高若梅1,2, 吴偲1, 龚亚辉1
收稿日期:
2018-05-24
修回日期:
2018-06-28
出版日期:
2018-11-05
发布日期:
2018-11-05
通讯作者:
杜乐
基金资助:
化学工程联合国家重点实验室开放课题(SKL-ChE-16A01);国家自然科学基金青年基金项目(21506004);北京化工大学青年后备人才启动经费项目(buctrc201617)。
LI Yang1, DU Le1,2, GAO Ruomei1,2, WU Cai1, GONG Yahui1
Received:
2018-05-24
Revised:
2018-06-28
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the State Key Laboratory of Chemical Engineering (SKL-ChE-16A01), the National Natural Science Foundation of China (21506004) and the Fundamental Research Funds for the Central Universities (buctrc201617).
摘要:
疏水纳米颗粒分散于有机体系中形成的纳米分散体,具有独特的理化性质和重要的应用价值。其中,纳米颗粒的单分散性、均匀性和稳定性是决定纳米分散体性能的关键。以CuO纳米分散体作为纳米流体和复合薄膜前体这一典型体系为研究对象,通过设计平板型微通道实现了CuO纳米分散体制备过程中的液滴聚并和改性CuO纳米颗粒的原位分散。制备了颗粒体积分数达2%、平均粒径约30 nm的CuO-基础油纳米流体,该纳米流体具有良好的稳定性和达到0.184 W·m-1·K-1的较高热导率;制备的CuO-PDMS(聚二甲基硅氧烷)复合薄膜具有较强的抗菌性能和颗粒复合层稳定性。通过系统性实验研究,证明了原位分散方法在强化改性颗粒高效分散中的重要作用,确定了颗粒性能及分散行为对分散体性能的影响规律。
中图分类号:
李阳, 杜乐, 高若梅, 吴偲, 龚亚辉. 微通道中原位分散技术可控制备氧化铜纳米流体及复合薄膜前体[J]. 化工学报, 2018, 69(11): 4918-4928.
LI Yang, DU Le, GAO Ruomei, WU Cai, GONG Yahui. Controllable preparation of CuO-based nanofluids and precursors of composite films by in situ dispersion in microchannel[J]. CIESC Journal, 2018, 69(11): 4918-4928.
[1] | JENSEN K F. Flow chemistry-microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3):858-869. |
[2] | 汪伟, 谢锐, 巨晓洁, 等. 微流控法制备新型微颗粒功能材料研究新进展[J]. 化工学报, 2014, 65(7):2555-2562. WANG W, XIE R, JU X J, et al. Recent progress of microfluidic fabrication of novel functional microparticles[J]. CIESC Journal, 2014, 65(7):2555-2562. |
[3] | GARCIA A, RODRIGUEZ B, OZTURK D. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties[J]. Polymer Bulletin, 2018, 75(5):2053-2069. |
[4] | 孙斌, 钱铮. CuO/R141b纳米制冷剂在管内的流动沸腾传热特性[J]. 化工学报, 2012, 63(3):733-739. SUN B, QIAN Z. Boiling heat transfer characteristics of nano-refrigerant CuO/R141b flowing in smooth tube[J]. CIESC Journal, 2012, 63(3):733-739. |
[5] | PU X, SU Y H. Heterogeneous catalysis in microreactors with nanofluids for fine chemicals syntheses:benzylation of toluene with benzyl chloride over silica-immobilized FeCl3 catalyst[J]. Chemical Engineering Science, 2018, 184(7):200-208. |
[6] | NAVAEI A S, MOHAMMED H A, MUNISAMY K M, et al. Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels[J]. Powder Technology, 2015, 286(12):332-341. |
[7] | HOSSEINI M, MOHAMMADIAN E, SHIRVANI M, et al. Thermal analysis of rotating system with porous plate using nanofluid[J]. Powder Technology, 2014, 254(2):563-571. |
[8] | IJAM A, GOLSHEIKH A M, SAIDUR R, et al. A glycerol-water-based nanofluid containing graphene oxide nanosheets[J]. Journal of Materials Science, 2014, 49(17):5934-5944. |
[9] | WANG P, LV J Z, BAI M L, et al. The reciprocating motion characteristics of nanofluid inside the piston cooling gallery[J]. Powder Technology, 2015, 274(4):402-417. |
[10] | GHASEMI S, KARIMIPOUR A. Experimental investigation of the effects of temperature and mass fraction on the dynamic viscosity of CuO-paraffin nanofluid[J]. Applied Thermal Engineering, 2018, 128(1):189-197. |
[11] | SAEEDINIA M, AKHAVAN-BEHABADI M A, RAZI P. Thermal and rheological characteristics of CuO-base oil nanofluid flow inside a circular tube[J]. International Communications in Heat and Mass Transfer, 2012, 39(1):152-159. |
[12] | HASHEMI S M, AKHAVAN-BEHABADI M A. An empirical study on heat transfer and pressure drop characteristics of CuO-base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux[J]. International Communications in Heat and Mass Transfer, 2012, 39(1):144-151. |
[13] | LU X F, HUANG Y J, LIU B Q, et al. Light-controlled shrinkage of large-area gold nanoparticle monolayer film for tunable SERS activity[J]. Chemistry of Materials, 2018, 30(6):1989-1997. |
[14] | JO H J, CHOI J W, LEE S H, et al. Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna:the importance of their dissolved fraction varying with preparation methods[J]. Journal of Hazardous Materials, 2012, 227(5):301-308. |
[15] | LI M, WANG Q Y, SHI X D, et al. Detection of mercury(Ⅱ) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer[J]. Analytical Chemistry, 2011, 83(18):7061-7065. |
[16] | QUARESMA P, OSORIO I, DORIA G, et al. Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection[J]. RSC Advances, 2014, 4(8):3659-3667. |
[17] | LIU S, JIANG C, YANG B, et al. Controlled depositing of silver nanoparticles on flexible film and its application in ultrasensitive detection[J]. RSC Advances, 2014, 4(80):42358-42363. |
[18] | YOO H G, YUN M B, JEONG C K, et al. Performance enhancement of electronic and energy devices via block copolymer self-assembly[J]. Advanced Materials, 2015, 27(27):3982-3998. |
[19] | FORTUNI B, INOSE T, UEZONO S, et al. In situ synthesis of Au-shelled Ag nanoparticles on PDMS for flexible, long-life, and broad spectrum-sensitive SERS substrates[J]. Chemical Communications, 2017, 53(24):11298-11301. |
[20] | LAMBERTI A, VIRGA A, ANGELINI A, et al. Metal-elastomer nanostructures for tunable SERS and easy microfluidic integration[J]. RSC Advances, 2014, 5(6):4404-4410. |
[21] | KANG G D, CAO Y M. Development of antifouling reverse osmosis membranes for water treatment:a review[J]. Water Research, 2012, 46(3):584-600. |
[22] | CHANG M H, LIU H S, TAI C Y. Preparation of copper oxide nanoparticles and its application in nanofluid[J]. Powder Technology, 2011, 207(1/2/3):378-386. |
[23] | ZHU H T, ZHANG C Y, TANG Y M, et al. Novel synthesis and thermal conductivity of CuO nanofluid[J]. Journal of Physical Chemistry C, 2007, 111(4):1646-1650. |
[24] | LEE S W, PARK S D, BANG I C. Critical heat flux for CuO nanofluid fabricated by pulsed laser ablation differentiating deposition characteristics[J]. International Communications in Heat and Mass Transfer, 2012, 55(23/24):6908-6915. |
[25] | OZERINC S, KAKAC S, YAZICIOGLU A G. Enhanced thermal conductivity of nanofluids:a state-of-the-art review[J]. Microfluidics and Nanofluidics, 2010, 8(2):145-170. |
[26] | AISHWARYA V, SUGANTHI K S, RAJAN K S. Transport properties of nano manganese ferrite-propylene glycol dispersion (nanofluids):new observations and discussion[J]. Journal of Nanoparticle Research, 2013, 15(7):1-14. |
[27] | VARDHAN P V, SUGANTHI K S, MANIKANDAN S, et al. Nanoparticle clustering influences rheology and thermal conductivity of nano-manganese ferrite dispersions in ethylene glycol and ethylene glycol-water mixture[J]. Nanoscience & Nanotechnology Letters, 2014, 6(12):1095-1101. |
[28] | MAO X W, RUTLEDGE G C, HATTON T A. Polyvinylferrocene for noncovalent dispersion and redox-controlled precipitation of carbon nanotubes in nonaqueous media[J]. Langmuir, 2013, 29(31):9626-9634. |
[29] | HEDAYATI F, DOMAIRRY G. Effects of nanoparticle migration and asymmetric heating on mixed convection of TiO2-H2O nanofluid inside a vertical microchannel[J]. Powder Technology, 2015, 272(1):250-259. |
[30] | KIM J W, FERNANDEZ-NIEVES A, DAN N, et al. Colloidal assembly route for responsive colloidosomes with tunable permeability[J]. Nano Letters, 2007, 7(9):2876-2880. |
[31] | LI Y J, ZHOU J E, TUNG S, et al. A review on development of nanofluid preparation and characterization[J]. Powder Technology, 2009, 196(2):89-101. |
[32] | RAO J K, RAIZADA A, GANGULY D, et al. Investigation of structural and electrical properties of novel CuO-PVA nanocomposite films[J]. Journal of Materials Science, 2015, 50(21):7064-7074. |
[33] | ZENNIFER M A, MANIKANDAN S, SUGANTHI K S, et al. Development of CuO-ethylene glycol nanofluids for efficient energy management:assessment of potential for energy recovery[J]. Energy Conversion and Management, 2015, 105(11):685-696. |
[34] | HASHEMI S M, AKHAVAN-BEHABADI M A. An empirical study on heat transfer and pressure drop characteristics of CuO-base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux[J]. International Communications in Heat and Mass Transfer, 2012, 39(1):144-151. |
[35] | DENG R S, ARIFIN D Y, MAK Y C, et al. Characterization of Taylor vortex flow in a short liquid column[J]. AIChE Journal, 2009, 55(12):3056-3065. |
[36] | ZHAO Q, LU Q, FENG Y Q. Dispersive microextraction based on magnetic polypyrrole nanowires for the fast determination of pesticide residues in beverage and environmental water samples[J]. Analytical and Bioanalytical Chemistry, 2013, 405(14):4765-4776. |
[37] | OKUBO Y, TOMA M, UEDA H, et al. Microchannel devices for the coalescence of dispersed droplets produced for use in rapid extraction processes[J]. Chemical Engineering Journal, 2004, 101(1/2/3):39-48. |
[38] | CHEN X A, LU H F, JIANG W, et al. De-emulsification of kerosene/water emulsions with plate-type microchannels[J]. Industrial & Engineering Chemistry Research, 2010, 49(19):9279-9288. |
[39] | NG T N, CHEN X Q, YEUNG K L. Direct manipulation of particle size and morphology of ordered mesoporous silica by flow synthesis[J]. RSC Advances, 2015, 5(18):13331-13340. |
[40] | SULEIMAN M, MOUSA M, HUSSEIN A, et al. Copper(Ⅱ)-oxide nanostructures:synthesis, characterizations and their applications-review[J]. Journal of Materials and Environmental Science, 2013, 4(5):792-797. |
[41] | UMESH V, RAJA B. A study on nucleate boiling heat transfer characteristics of pentane and CuO-pentane nanofluid on smooth and milled surfaces[J]. Experimental Thermal and Fluid Science, 2015, 64(6):23-29. |
[42] | NAGASAKA Y, NAGASHIMA A. Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method[J]. Journal of Physics E Scientific Instruments, 1981, 14(6):1435-1440. |
[43] | SHEIKHOLESLAMI M, GANJI D D. Heat transfer of Cu-water nanofluid flow between parallel plates[J]. Powder Technology, 2013, 235(2):873-879. |
[44] | SAEEDINIA M, AKHAVAN-BEHABADI M A, RAZI P. Thermal and rheological characteristics of CuO-base oil nanofluid flow inside a circular tube[J]. International Communications in Heat and Mass Transfer, 2012, 39(1):152-159. |
[45] | FARBODA M, ASL R K, ABADI A R N. Morphology dependence of thermal and rheological properties of oil-based nanofluids of CuO nanostructures[J]. Colloids & Surfaces A:Physicochemical & Engineering Aspects, 2015, 474(6):71-75. |
[46] | HAJIW S, SCHMITT J, IMPEROR-CLERC M, et al. Solvent-driven interactions between hydrophobically-coated nanoparticles[J]. Soft Matter, 2015, 11(19):3920-3926. |
[47] | DU L, WANG Y J, WANG K, et al. Preparation of calcium benzene sulfonate detergents by a microdispersion process[J]. Industrial & Engineering Chemistry Research, 2013, 52(31):10699-10706. |
[48] | LALATONNE Y, RICHARDI J, PILENI M P. van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals[J]. Nature Materials, 2004, 3(2):121-125. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[6] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[7] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[13] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[14] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[15] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||