化工学报 ›› 2018, Vol. 69 ›› Issue (11): 4746-4753.DOI: 10.11949/j.issn.0438-1157.20180478
陆梦科1, 匡吴奇1, 钱刚1, 段学志1, 周兴贵1, Chen De2
收稿日期:
2018-05-07
修回日期:
2018-07-12
出版日期:
2018-11-05
发布日期:
2018-11-05
通讯作者:
段学志
基金资助:
挪威国家石油公司VISTA项目;上海东方学者项目;上海启明星项目(17QA1401200)和111计划(B08021)。
LU Mengke1, KUANG Wuqi1, QIAN Gang1, DUAN Xuezhi1, ZHOU Xinggui1, CHEN De2
Received:
2018-05-07
Revised:
2018-07-12
Online:
2018-11-05
Published:
2018-11-05
Supported by:
supported by the VISTA (a research program funded by Statoil), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the Shanghai Rising-Star Program (17QA1401200) and the 111 Project of the Ministry of Education of China (B08021).
摘要:
沥青是油页岩中的重要有机质,也是油页岩中油母质热解产油和气过程的重要中间产物,对其热解研究有利于加深油页岩/油母质热解理解。通过索氏萃取提取出了绿河油页岩中的沥青,并对其进行了不同升温速率下热解实验。基于热重(TGA)数据,使用Friedman法计算了沥青热解的活化能,并通过活化能分布特征,推测沥青热解可能包含三个过程。接着,使用双高斯函数对含有交叠峰的DTG曲线进行反褶积处理,分解成三个峰,依次对应每一个过程。使用最小二乘法获得了这三个过程的活化能、指前因子和反应模型通式,并将获得的通式与四类固态物质热解模型中的11种理想模型进行对比,辨识出上述三个过程均遵循n级反应模型。
中图分类号:
陆梦科, 匡吴奇, 钱刚, 段学志, 周兴贵, Chen De. 美国绿河油页岩中沥青热解特征及动力学[J]. 化工学报, 2018, 69(11): 4746-4753.
LU Mengke, KUANG Wuqi, QIAN Gang, DUAN Xuezhi, ZHOU Xinggui, CHEN De. Pyrolysis characteristics and kinetics of bitumen from Green River oil shale[J]. CIESC Journal, 2018, 69(11): 4746-4753.
[1] | DYNI J R. Geology and resources of some world oil shale deposits[J]. Oil Shale, 2003, 20(3):193-252. |
[2] | DYNI J R. Oil shale developments in the United States[J]. Oil Shale, 2006, 23(2):97-98. |
[3] | BARTIS J T, LATOURRETTE T, DIXON L, et al. Oil Shale Development in the United States:Prospects and Policy Issues[M]. Santa Monica, CA:Rand Corporation, 2005:1-88. |
[4] | GAJICA G ?, ŠAJNOVI? A M, STOJANOVI? K A, et al. The influence of pyrolysis type on shale oil generation and its composition (Upper layer of Aleksinac oil shale, Serbia)[J]. Serb. Chem. Soc., 2017, 82(12):1461-1477. |
[5] | TIWARI P, DEO M. Detailed kinetic analysis of oil shale pyrolysis TGA data[J]. AIChE J., 2012, 58(2):505-515. |
[6] | LI Q, HAN X, LIU Q, et al. Thermal decomposition of Huadian oil shale(Ⅰ):Critical organic intermediates[J]. Fuel, 2014, 121(2):109-116. |
[7] | CHEN B, HAN X, LI Q, et al. Study of the thermal conversions of organic carbon of Huadian oil shale during pyrolysis[J]. Energy Conversion & Management, 2016, 127:284-292. |
[8] | 钱家麟, 王剑秋, 李术元. 世界油页岩综述[J]. 中国能源, 2006, 28(8):16-9. QIAN J L, WANG J Q, LI S Y. World oil shale[J]. Energy of China, 2006, 28(8):16-19. |
[9] | WILLIAMS P T, AHMAD N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis[J]. Applied Energy, 2000, 66(2):113-133. |
[10] | WANG W, LI S, YUE C, et al. Multistep pyrolysis kinetics of North Korean oil shale[J]. Oil Shale, 2015, 31(3):250-265. |
[11] | CHEIKH MOINE E, GROUNE K, EI HAMIDI A, et al. Multistep process kinetics of the non-isothermal pyrolysis of Moroccan Rif oil shale[J]. Energy, 2016, 115:931-941. |
[12] | BAI F, GUO W, LV X, et al. Kinetic study on the pyrolysis behavior of Huadian oil Shale via non-isothermal thermogravimetric data[J]. Fuel, 2015, 146:111-118. |
[13] | JANKOVI? B. The kinetic modeling of the non-isothermal pyrolysis of Brazilian oil shale:application of the Weibull probability mixture model[J]. Journal of Petroleum Science and Engineering, 2013, 111:25-36. |
[14] | PEREJÓN A, SÁNCHEZ-JIMÉNEZ P E, CRIADO J M, et al. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure[J]. The Journal of Physical Chemistry B, 2011, 115(8):1780-1791. |
[15] | VYAZOVKIN S, BURNHAM A K, CRIADO J M, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochim Acta, 2011, 520:1-19. |
[16] | WANG Q, LIU H, SUN B, et al. Study on pyrolysis characteristics of Huadian oil shale with isoconversional method[J]. Oil Shale, 2009, 26(2):148-162. |
[17] | ABOULKAS A, EI HARFI K. Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen[J]. Oil Shale, 2008, 25:426-443. |
[18] | LI S, YUE C. Study of pyrolysis kinetic of oil shale[J]. Fuel, 2003, 82:337-342. |
[19] | LÜ X, SUN Y, LU T, et al. An efficient and general analytical approach to modelling pyrolysis kinetics of oil shale[J]. Fuel, 2014, 135:182-187. |
[20] | CRIADO J M. Kinetic analysis of DTG data from master curves[J]. Thermochim Acta, 1978, 24(1):186-189. |
[21] | POPESCU C. Integral method to analyze the kinetic of heterogeneous reactions under non-isothermal conditions:a variant on the Ozawa-Flynn-Wall method[J]. Thermochim Acta, 1996, 285:309-323. |
[22] | LAI D, ZHAN J H, TIAN Y, et al. Mechanism of kerogen pyrolysis in terms of chemical structure transformation[J]. Fuel, 2017, 199:504-511. |
[23] | BURNHAM A K, HAPPE J A. On the mechanism of kerogen pyrolysis[J]. Fuel, 1984, 63(10):1353-1356. |
[24] | HERSHKOWITZ F, OLMSTEAD W N, RHODES R P, et al. Molecular mechanism of oil shale pyrolysis in nitrogen and hydrogen atmospheres[J]. Am. Chem. Soc. Symp., 1983, 281(3):301-316. |
[25] | KAPADIA P R, KALLOS M S, GATES I D. A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen[J]. Fuel Processing Technology, 2015, 131:270-289. |
[26] | BUNGER J W, MORI S, OBLAD A G. Processing of tar sand bitumens(Ⅰ):Thermal cracking of Utah and Athabasca tar sand bitumens[J]. Preprints of Papers-American Chemical Society, Division of Fuel Chemistry, 1976, 21:147-158. |
[27] | SPEIGHT J G. Thermal cracking of Athabasca bitumen, Athabasca asphaltenes, and Athabasca deasphalted heavy oil[J]. Fuel, 1970, 49(2):134-145. |
[28] | HAYASHITANI M, BENNION D W, DONNELLY J K, et al. Thermal cracking models for Athabasca oil sands oil[C]//53rd Annual Fall Technical Conference and Exhibition of the SPE of AIME, SPE 7589, Houston, Texas, USA, 1978. |
[29] | MURUGAN P, MANI T, MAHINPEY N, et al. Pyrolysis kinetics of Athabasca bitumen using a TGA under the influence of reservoir sand[J]. Canadian Journal of Chemical Engineering, 2012, 90(2):315-319. |
[30] | SHIN S, IM S, KWON E H, et al. Kinetic study on the nonisothermal pyrolysis of oil sand bitumen and its maltene and asphaltene fractions[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124:658-665. |
[31] | ABOULKAS A, EI HARFI K. Effects of acid treatments on Moroccan Tarfaya oil shale and pyrolysis of oil shale and their kerogen[J]. J. Fuel Chem. Technol., 2009, 37:659-667. |
[32] | SCRIMA D A, YEN T F, WARREN, P L. Thermal chromatography of Green River oil shale (I):Bitumen and kerogen[J]. Energ. Source, 1974, 1:321-336. |
[33] | KHAWAM A, FLANAGAN D R. Solid-state kinetic models:basics and mathematical fundamentals[J]. J. Phys. Chem. B, 2006, 110:17315-17328. |
[34] | FRIEDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenol plastic[J]. J. Polym. Sci. Part C:Polym. Symp., 1964, 6(1):183-195. |
[35] | SUNOSE T, AKAJIRA T. Method of determining activation deterioration constant of electrical insulating materials[J]. Res. Rep. Chiba Inst. Technol. (Sci. Technol.), 1971, 16:22-31. |
[36] | FLYNN J H. The isoconversional method for determination of energy of activation at constant heating rates:corrections for the Dolye approximation[J]. J. Therm. Anal., 1983, 27(1):95-102. |
[37] | OZAWA T. A new method of analyzing thermogravimetric data[J]. Bull. Chem. Soc. Jpn., 1965, 38(11):1881-1886. |
[38] | 王擎, 姜倩倩, 贾春霞, 等. 印尼油砂热解动力学新探[J]. 中国电机工程学报, 2012, 32:127-132. WANG Q, JIANG Q Q, JIA C X, et al. New exploration of the pyrolysis kinetics for the Indonesian oil sand[J]. Proceedings of the CSEE, 2012, 32:127-132. |
[39] | ROMANENKO S V, STROMBERG A G. Modelling of analytical peaks:peaks modifications[J]. Analytica Chimica Acta, 2007, 581(2):343-354. |
[40] | QING W, WANG X, LIU H, et al. Study of the combustion mechanism of oil shale semi-coke with rice straw based on Gaussian multi-peak fitting and peak-to-peak methods[J]. Oil Shale, 2013, 30(2):157-172. |
[41] | YAN Q L, ZEMAN S, ELBEIH A. Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs)[J]. Thermochimica Acta, 2012, 537:1-12. |
[42] | WANG Q, JIA C, JIANG Q, et al. Pyrolysis model of oil sand using thermogravimetric analysis[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(1):499-509. |
[43] | SUN Y, BAI F, LÜ X, et al. Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model[J]. Energy, 2015, 82:705-713. |
[44] | WANG Q, JIA C, JIANG Q, et al. Pyrolysis model of oil sand using thermogravimetric analysis[J]. Journal of Thermal Analysis and Calorimetry, 2014, 116(1):499-509. |
[45] | MYDLOVÁ J, KRUP?ÍK J, KORYTÁR P, et al. On the use of computer assisted resolution of non-separable peaks in a congener specific polybrominated diphenyl ether capillary gas chromatographic analysis[J]. Journal of Chromatography A, 2007, 1147(1):95-104. |
[46] | SHIN S, IM S I, KWON E H, et al. Kinetic study on the nonisothermal pyrolysis of oil sand bitumen and its maltene and asphaltene fractions[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124:658-665. |
[47] | CARDONA M, BOFFITO D C, PATIENCE G S. Thermogravimetric heat and mass transfer:modeling of bitumen pyrolysis[J]. Fuel, 2015, 143:253-261. |
[48] | NASSAR N N, HASSAN A, LUNA G, et al. Comparative study on thermal cracking of Athabasca bitumen[J]. Journal of thermal analysis and calorimetry, 2013, 114(2):465-472. |
[49] | ŠIMON P. Isoconversional methods[J]. J. Therm. Anal. Calorim., 2004, 76:123-132. |
[50] | BURNHAM A K, DINH L N. A comparison of isoconversional and model-fitting approaches to kinetic parameter estimation and application predictions[J]. Journal of Thermal Analysis and Calorimetry, 2007, 89(2):479-490. |
[51] | TACHON N, JAHOUH F, DELMAS M, et al. Structural determination by atmospheric pressure photoionization tandem mass spectrometry of some compounds isolated from the SARA fractions obtained from bitumen[J]. Rapid Communications in Mass Spectrometry, 2011, 25(18):2657-2671. |
[52] | SPEIGHT J G. Asphaltenes in crude oil and bitumen:structure and dispersion[M]//Suspensions:Fundamentals and Applications in the Petroleum Industry. Advances in Chemistry series 25. Schramm L L, Ed. Washington DC:American Chemical Society, 1996:377-401. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[5] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[6] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[7] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[8] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[9] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[10] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[11] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[14] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[15] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||