1 |
ZhangX B, YaoL, QiuL M, et al. Experimental study on cryogenic moisture uptake in polyurethane foam insulation material[J]. Cryogenics, 2012, 52(12): 810-815.
|
2 |
ZhangX B, ChenJ Y, GanZ H, et al. Experimental study of moisture uptake of polyurethane foam subjected to a heat sink below 30 K[J]. Cryogenics, 2014, 59(1): 1-6.
|
3 |
胡伟峰, 申麟, 杨建民, 等. 低温推进剂长时间在轨的蒸发量控制技术发展[J]. 导弹与航天运载技术, 2009, 304(6): 28-34.
|
|
HuW F, ShenL, YangJ M, et al. Progress of study on transpiration control technology for orbit long-term applied cryogenic propellant[J]. Missles and Space Vehicles, 2009, 304(6): 28-34.
|
4 |
MeseroleJ, JonesO, BrennanS, et al. Mixing-induced ullage condensation and fluid destratification[C]// Microgravity Fluid Management Symposium. 1987: 732-737.
|
5 |
LinC, HasanM, NylandT. Mixing and transient interface condensation of a liquid hydrogen tank[C]// AIAA. 2013.
|
6 |
KassemiM, KartuzovaO. Effect of interfacial turbulence and accommodation coefficient on CFD predictions of pressurization and pressure control in cryogenic storage tank[J]. Cryogenics, 2016, 74(15): 138-153.
|
7 |
FlachbartR H, HastingsL J, HedayatA, et al. Thermodynamic vent system performance testing with subcooled liquid methane and gaseous helium pressurant[J]. Cryogenics, 2007, 48(5): 217-222.
|
8 |
KassemiM, KartuzovaO. CFD modeling of the multipurpose hydrogen test bed (MHTB) self-pressurization and spray bar mixing experiments in normal gravity: effect of the accommodation coefficient on the tank pressure[C]// AIAA. 2015.
|
9 |
KartuzovaO, KassemiM. Self-Pressurization and spray cooling simulations of the multipurpose hydrogen test bed (MHTB) ground-based experiment[C]// AIAA. 2014.
|
10 |
PanzarellaC H, KassemiM. Self-pressurization of large spherical cryogenic tanks in space[J]. Journal of Spacecraft & Rockets, 2012, 42(42): 299-308.
|
11 |
KassemiM, KartuzovaO, HyltonS. Validation of two-phase CFD models for propellant tank self-pressurization: crossing fluid types, scales, and gravity levels[J]. Cryogenics, 2018, 89: 1-15.
|
12 |
BarsiS, KassemiM. Numerical and experimental comparisons of the self-pressurization behavior of an LH2 tank in normal gravity[J]. Cryogenics, 2008, 48(3): 122-129.
|
13 |
PanzarellaC H, KassemiM. On the validity of purely thermodynamic descriptions of two-phase cryogenic fluid storage[J]. Journal of Fluid Mechanics, 2003, 484(484):41-68.
|
14 |
BarsiS, KassemiM. A numerical study of tank pressure control in reduced gravity[C]// AIAA. 2013.
|
15 |
FuJ, SundenB, ChenX. Influence of wall ribs on the thermal stratification and self-pressurization in a cryogenic liquid tank[J]. Applied Thermal Engineering, 2014, 73(2): 1421-1431.
|
16 |
ZhanL, LiY, JinY, et al. Thermodynamic performance of pre-pressurization in a cryogenic tank[J]. Applied Thermal Engineering, 2017, 112: 801-810.
|
17 |
WangL, LiY, ZhaoZ, et al. Transient thermal and pressurization performance of LO2 tank during helium pressurization combined with outside aerodynamic heating[J]. International Journal of Heat & Mass Transfer, 2013, 62(1): 263-271.
|
18 |
刘展, 孙培杰, 李鹏, 等. 微重力下低温液氧贮箱热分层研究[J]. 低温工程, 2016, 209(1): 25-31.
|
|
LiuZ, SunP J, LiP, et al. Research on thermal stratification of cryogenic liquid oxygen tank in microgravity[J]. Cryogeics, 2016, 209(1): 25-31.
|
19 |
程向华, 厉彦忠, 陈二锋, 等. 回流口位置对液体火箭液氧贮箱热分层的影响[J]. 航空动力学报, 2009, 24(1): 224-229.
|
|
ChengX H, LiY Z, ChenE F, et al. Effect of the return flow locations on the thermal stratification in liquid oxygen tank of rocket[J]. Journal of Aerospace Power, 2009, 24(1): 224-229.
|
20 |
王磊, 厉彦忠, 李翠, 等. 液体火箭贮箱增压排液过程温度场数值研究[J]. 航空动力学报, 2011, 26(8): 1893-1899.
|
|
WangL, LiY Z, LiC, et al. Numerical study on temperature distribution of tank pressurization process of liquid rocket during outflow[J]. Journal of Aerospace Power, 2011, 26(8): 1893-1899.
|
21 |
LeiW, LiY, KangZ, et al. Comparison of three computational models for predicting pressurization characteristics of cryogenic tank during discharge[J]. Cryogenics, 2015, 65: 16-25.
|
22 |
ChenL, LiangG Z. Simulation research of vaporization and pressure variation in a cryogenic propellant tank at the launch site[J]. Microgravity Science & Technology, 2013, 25(4):203-211.
|
23 |
陈亮, 梁国柱, 魏一, 等. 低温推进剂贮箱压力变化的CFD仿真[J]. 航空动力学报, 2015, 30(6): 1470-1477.
|
|
ChenL, LiangG Z, WeiY, et al. CFD simulation of cryogenic propellant tank pressure variation[J]. Journal of Aerospace Power, 2015, 30(6): 1470-1477.
|
24 |
李佳超, 梁国柱. 地面及微重力条件下低温贮箱内相变和传热的数值仿真[J]. 空间科学学报, 2016, 36(4):513-519.
|
|
LiJ C, LiangG Z. Numerical simulation of phase change and heat transfer in cryogenic tank under the ground and microgravity condition[J]. Chin. J. Space Sci., 2016, 36(4): 513-519.
|
25 |
HoS H, RahmanM M. Forced convective mixing in a zero boil-off cryogenic storage tank[J]. International Journal of Hydrogen Energy, 2012, 37(13): 10196-10209.
|
26 |
WangL, LiY, LiC, et al. CFD investigation of thermal and pressurization performance in LH2 tank during discharge[J]. Cryogenics, 2013, 57(5): 63-73.
|
27 |
MajumdarA, ValenzuelaJ, LeclairA, et al. Numerical modeling of self-pressurization and pressure control by a thermodynamic vent system in a cryogenic tank[J]. Cryogenics, 2016, 74: 113-122.
|
28 |
WangB, HuangY, ChenZ, et al. Performance of thermodynamic vent system for cryogenic-propellant storage using different control strategies[J]. Applied Thermal Engineering, 2017, 126: 100-107.
|
29 |
马原, 孙培杰, 李鹏, 等. 液氢贮箱微重力喷射降压特性数值模拟研究[J]. 真空与低温, 2018, 209(1): 25-31.
|
|
MaY, SunP J, LiP, et al. Numerical investigation on performance of spraying pressure control technique for liquid hydrogen tank at microgravity[J]. Vacuum & Cryogenics, 2018, 209(1): 25-31.
|
30 |
黄永华, 陈忠灿, 汪彬, 等. 控制策略对贮箱热力排气系统性能的影响[J]. 化工学报, 2017, 68(12): 4702-4708.
|
|
HuangY H, ChenZ C, WangB, et al. Effect of pressure control strategy on performance of thermodynamic vent system for storage tank[J]. CIESC Journal, 2017, 68(12): 4702-4708.
|