1 |
程刚, 段俊, 李金香, 等. 北京市交通环境大气氨污染水平分析[J]. 大气与环境光学学报, 2018, 13(3): 193-207.
|
|
ChengG, DuanJ, LiJ X, et al. Analysis of atmospheric ammonia pollution level in Beijing traffic environment[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(3): 193-207.
|
2 |
李穹, 吴玉新, 杨海瑞, 等. SNCR脱硝特性的模拟及优化[J]. 化工学报, 2013, 64(5): 1789-1796.
|
|
LiQ, WuY X, YangH R, et al. Simulation and optimization of SNCR process[J]. CIESC Journal, 2013, 64(5): 1789-1796.
|
3 |
LaiJ K, WachsI E. A perspective on the selective catalytic reduction (SCR) of NO with NH3 by supported V2O5-WO3/TiO2 catalysts[J]. ACS Catalysis, 2018, 8(3): 6537-6551.
|
4 |
顾卫荣, 周明吉, 马薇. 燃煤烟气脱硝技术的研究进展[J]. 化工进展, 2012, 31(9): 2084-2092.
|
|
GuW R, ZhouM J, MaW. Technology statue and analysis on coal-fired flue gas denitrification[J]. Chemical Industry and Engineering Progress, 2012, 31(9): 2084-2092.
|
5 |
ChungY, HuangC, LiuC H, et al. Biotreatment of hydrogen sulfide-and ammonia-containing waste gases by fluidized bed bioreactor[J]. Journal of the Air & Waste Management Association, 2001, 51(2): 163-172.
|
6 |
BurchR, SouthwardB, W L. The nature of the active metal surface of catalysts for the clean combustion of biogas containing ammonia[J]. Journal of Catalysis, 2001, 98(2): 286-295.
|
7 |
HuangT L, CliffeK R, MacinnesJ M. The removal of ammonia from water by a hydrophobic catalyst[J]. Environmental Science & Technology, 2000, 34(22): 4804-4809.
|
8 |
ChmielarzL, KustrowskiP, RafalskaL A, et al. Selective oxidation of ammonia to nitrogen on transition metal containing mixed metal oxides[J]. Applied Catalysis B-Environmental, 2005, 48(3/4): 235-244.
|
9 |
RamisG, YiL, BuscaG. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3: an FT-IR study[J]. Catalysis Today, 1996, 28(4): 373-380.
|
10 |
WangZ, QuZ, QuanX, et al. Selective catalytic oxidation of ammonia to nitrogen over ceria–zirconia mixed oxides[J]. Applied Catalysis A: General, 2012, 411/412(16): 131-138.
|
11 |
HongS, KarimA, RahmanT S, et al. Selective oxidation of ammonia on RuO2(110): a combined DFT and KMC study[J]. Journal of Catalysis, 2010, 276(2): 371-381.
|
12 |
WangF, MaJ, HeG, et al. Nanosize effect of Al2O3 in Ag/Al2O3 catalyst for the selective catalytic oxidation of ammonia[J]. ACS Catalysis, 2018, 8(4): 2670-2682.
|
13 |
OlofssonG, HinzA, AnderssonA. A transient response study of the selective catalytic oxidation of ammonia to nitrogen on Pt/CuO/Al2O3[J]. Chemical Engineering Science, 2004, 59(16): 4113-4123.
|
14 |
YuanR M, FuG, XuX, et al. Mechanisms for selective catalytic oxidation of ammonia over vanadium oxides[J]. The Journal of Physical Chemistry C, 2011, 115(43): 21218-21229.
|
15 |
LeeJ Y, KimS B, HongS C. Characterization and reactivity of natural manganese ore catalysts in the selective catalytic oxidation of ammonia to nitrogen[J]. Chemosphere, 2003, 50(8): 1115-1122.
|
16 |
WangH, NingP, ZhangQ, et al. Promotional mechanism of WO3 over RuO2-Fe2O3 catalyst for NH3-SCO reaction[J]. Applied Catalysis A: General, 2018, 561(5): 158-167.
|
17 |
LeeS M, HongS C. Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst[J]. Applied Catalysis B: Environmental, 2015, 163: 30-39.
|
18 |
张以河, 王新珂, 吕凤柱, 等. 赤泥脱碱及功能新材料研究进展[J]. 环境工程学报, 2016, 10(7): 3383-3390.
|
|
ZhangY H, WangX K, LyuF Z, et al. Study process of alkali removal from red mud and novel functional materials[J]. Chinese Journal of Environmental Engineering, 2016, 10(7): 3383-3390.
|
19 |
南相莉, 张廷安, 刘燕, 等. 我国赤泥综合利用分析[J]. 过程工程学报, 2010, 10(S1): 264-270.
|
|
NanX L, ZhangT A, LiuY, et al. Analysis of comprehensive utilization of red mud in China[J]. The Chinese Journal of Process Engineering, 2010, 10(S1): 264-270.
|
20 |
杜军, 王怀彬, 金霄. 国内外垃圾焚烧炉技术概述[J]. 工业锅炉, 2003, 5: 15-19.
|
|
DuJ, WangH B, JinX. An analysis summary of urban waste incineration technology in our and foreign countries[J]. Industrial Boiler, 2003, 5: 15-19.
|
21 |
XiongS, WengJ, LiaoY, et al. Alkali metal deactivation on the low temperature selective catalytic reduction of NOx with NH3 over MnOx-CeO2: a mechanism study[J]. The Journal of Physical Chemistry C, 2016, 120(28): 15299-15309.
|
22 |
PengY, LiJ, ChenL, et al. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study[J]. Environmental Science & Technology, 2012, 46(5): 2864-2869.
|
23 |
SunJ, LuY, ZhangL, et al. Comparative study of different doped metal cations on the reduction, acidity, and activity of Fe9M1Ox (M=Ti4+, Ce4+/3+, Al3+) catalysts for NH3-SCR reaction[J]. Industrial & Engineering Chemistry Research, 2017, 56(42): 12101-12110.
|
24 |
KimT H, GongG T, LeeB G, et al. Catalytic decomposition of sulfur trioxide on the binary metal oxide catalysts of Fe/Al and Fe/Ti[J]. Applied Catalysis A: General, 2006, 305(1): 39-45.
|
25 |
YangS, WangC, MaL, et al. Substitution of WO3 in V2O5/WO3-TiO2 by Fe2O3 for selective catalytic reduction of NO with NH3[J]. Catalysis Science & Technology 2013, 3: 161-168.
|
26 |
MaL, LiJ, KeR, et al. Catalytic performance, characterization, and mechanism study of Fe2(SO4)3/TiO2 catalyst for selective catalytic reduction of NOx by ammonia[J]. The Journal of Physical Chemistry C, 2011, 115(15): 7603-7612.
|
27 |
AkahA, CundyC, GarforthA. The selective catalytic oxidation of NH3 over Fe-ZSM-5[J]. Applied Catalysis B: Environmental, 2005, 59(3/4): 221-226.
|
28 |
SjövallH, BlintR J, OlssonL. Detailed kinetic modeling of NH3 and H2O adsorption, and NH3 oxidation over Cu-ZSM-5[J]. The Journal of Physical Chemistry C, 2009, 113(4): 1393-1405.
|
29 |
WangC, YangS, ChangH, et al. Structural effects of iron spinel oxides doped with Mn, Co, Ni and Zn on selective catalytic reduction of NO with NH3[J]. Journal of Molecular Catalysis A: Chemical, 2013, 376: 13-21.
|
30 |
YangS, LiuC, ChangH, et al. Improvement of the activity of γ-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures: NO reduction versus NH3 oxidization[J]. Industrial & Engineering Chemistry Research, 2013, 52(6): 5601-5610.
|