化工学报 ›› 2019, Vol. 70 ›› Issue (4): 1349-1357.DOI: 10.11949/j.issn.0438-1157.20180720
收稿日期:
2018-07-03
修回日期:
2019-01-10
出版日期:
2019-04-05
发布日期:
2019-04-05
通讯作者:
黄金
作者简介:
<named-content content-type="corresp-name">朱明汉</named-content>(1994—),男,硕士研究生,<email>247650856@qq.com</email>|黄金(1975—),男,博士,教授,<email>gduthuangjin@126.com</email>
基金资助:
Minghan ZHU1(),Pengfei BAI2,Yanxin HU1,Jin HUANG1(
)
Received:
2018-07-03
Revised:
2019-01-10
Online:
2019-04-05
Published:
2019-04-05
Contact:
Jin HUANG
摘要:
设计并制作了总厚度为0.85 mm的超薄平板热管,热管的毛细芯采用烧结多孔槽道结构,实现了槽道和多孔结构的结合,根据该结构制作了一个铝制模具。该热管设计结合了超薄化和易制作的特点,对热管性能测试搭建了实验平台,分析了加热功率、铜粉粒径、槽道数目对热管热性能的影响,热阻和最大传热能力用来表征热管的性能。结果表明在加热功率为14 W时,放置铜板和热管的加热铜块温度分别是102℃和66℃,热管有效降低了热源温度;当铜粉粒径较大时热管的热阻和传热极限也较大,粒径减少时出现相反现象。相比单槽道结构,双槽道结构出现了更低热阻,两者最小差异为21%。
中图分类号:
朱明汉, 白鹏飞, 胡艳鑫, 黄金. 烧结多孔槽道吸液芯超薄平板热管的传热性能[J]. 化工学报, 2019, 70(4): 1349-1357.
Minghan ZHU, Pengfei BAI, Yanxin HU, Jin HUANG. Heat transfer performance of ultra-thin plate heat pipe with sintered porous channels structures wick[J]. CIESC Journal, 2019, 70(4): 1349-1357.
Wick structure | Porosity/% |
---|---|
copper powder 120—180 μm | 39.13 |
copper powder 75—120 μm | 34.56 |
copper powder 58—75 μm | 32.23 |
表1 毛细芯孔隙率
Table 1 Porosity of wick structure
Wick structure | Porosity/% |
---|---|
copper powder 120—180 μm | 39.13 |
copper powder 75—120 μm | 34.56 |
copper powder 58—75 μm | 32.23 |
1 | 王辉, 汤勇, 余建军 . 相变传热微通道技术的研究进展[J]. 机械工程学报, 2010, 46(24): 101-106. |
Wang H , Tang Y , Yu J J . Recent advances of the phase change micro-channel cooling structure[J]. Journal of Mechanical Engineering, 2010, 46(24): 101-106. | |
2 | Li J . Patents review for cooling of high power electronic components[J]. Recent Patents on Engineering, 2008, 2(2): 174-188. |
3 | Li J , Lv L C . Micro flat heat pipes for microelectronics cooling: review[J]. Recent Patents on Mechanical Engineering, 2013, 6(3): 120-127. |
4 | Marcinichen J B , Thome J R , Michel B . Cooling of microprocessors with micro-evaporation: a novel two-phase cooling cycle[J]. International Journal of Refrigeration, 2010, 33(7): 1264-1276. |
5 | 郝俊娇, 潘日, 周刚, 等 . 高热通量电子元件中热管散热技术的进展[J]. 化工进展, 2015, 34(5): 1220-1224. |
Hao J J , Pan R , Zhou G , et al . Development of heat pipe cooling technology in high heat flux electronic components[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1220-1224. | |
6 | Marcinichen J , Olivier J , Lamaison N , et al . Advances in electronics cooling[J]. Heat Transfer Engineering, 2013, 34(56): 434-446. |
7 | 张程宾, 施明恒, 陈永平, 等 . “Ω”形轴向槽道热管的流动和传热特性[J]. 化工学报, 2008, 59(3): 544-550. |
Zhang C B , Shi M H , Chen Y P , et al . Flow and heat transfer characteristics of heat pipe with axial “Ω” -shaped grooves[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(3): 544-550. | |
8 | 林振玄, 马琦, 汪国山, 等 . 一种铜丝结构的新型微槽道平板热管[J]. 化工学报, 2010, 61(1): 27-31. |
Lin Z X , Ma Q , Wang G S , et al . Thermal performance of a new copper wire-bonded f at heat pipe[J]. CIESC Journal, 2010, 61(1): 27-31. | |
9 | Kempers R , Ewing D , Ching C Y . Effect of number of mesh layers and fluid loading on the performance of screen mesh wicked heat pipes[J]. Applied Thermal Engineering, 2006, 26(5/6): 589-595. |
10 | Lv L C , Li J . Managing high heat flux up to 500 W·cm-2 through an ultra-thin flat heat pipe with superhydrophilic wick[J]. Applied Thermal Engineering, 2017, 122: 593-600. |
11 | 纪献兵, 徐进良, Abanda A M , 等 . 超轻多孔泡沫金属平板热管的传热性能研究[J]. 中国电机工程学报, 2013, 33(2): 72-78. |
Ji X B , Xu J L , Abanda A M , et al . Investigation on heat transfer performance of flat heat pipes with ultra-light porous metal foam wicks[J]. Proceedings of the CSEE, 2013, 33(2): 72-78. | |
12 | Tang Y , Yuan D , Lu L S , et al . A multi-artery vapor chamber and its performance[J]. Applied Thermal Engineering, 2013, 60(1/2): 15-23. |
13 | 董梁, 徐伟强, 李倩倩 . 异形整体式热管散热器传热实验与分析[J]. 化工学报, 2016, 67(10): 4104-4110. |
Dong L , Xu W Q , Li Q Q . Experiment and simulation analysis of special-shaped overall heat pipe radiator[J]. CIESC Journal, 2016, 67(10): 4104-4110. | |
14 | Li Y , He H F , Zeng Z X . Evaporation and condensation heat transfer in a heat pipe with a sintered-grooved composite wick[J]. Applied Thermal Engineering, 2013, 50(1): 342-351. |
15 | Singh R , Akbarzadeh A , Mochizuki M , et al . Flat miniature heat pipe with composite fibre wick structure for cooling of mobile handheld devices[C]//ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems Collocated with the ASME 2005 Heat Transfer Summer Conference. San Francisco, California, USA, 2005: 409-414. |
16 | Tang Y , Deng D X , Lu L S , et al . Experimental investigation on capillary force of composite wick structure by IR thermal imaging camera[J]. Experimental Thermal & Fluid Science, 2010, 34(2): 190-196. |
17 | Huang X , Franchi G . Design and fabrication of hybrid bi-modal wick structure for heat pipe application[J]. Journal of Porous Materials, 2008, 15(6): 635-642. |
18 | Zhou G H , Li J , Lv L C . An ultra-thin miniature loop heat pipe cooler for mobile electronics[J]. Applied Thermal Engineering, 2016, 109: 514-523. |
19 | 刘昌泉, 尚炜, 赵举贵, 等 . 纳米修饰吸液芯超薄平板热管的传热特性[J]. 化工学报, 2017, 68(12): 4508-4516. |
Liu C Q , Shang W , Zhao J G , et al . Heat transfer characteristics of ultra-thin flat heat pipe with nano-modified porous wick[J]. CIESC Journal, 2017, 68(12): 4508-4516. | |
20 | Lee D , Chan B . Fabrication and characterization of pure-metal-based submillimeter-thick flexible flat heat pipe with innovative wick structures[J]. International Journal of Heat & Mass Transfer, 2018, 122: 306-314. |
21 | Yang K S , Lin C C , Shyu J C , et al . Performance and two-phase flow pattern for micro flat heat pipes[J]. International Journal of Heat & Mass Transfer, 2014, 77: 1115-1123. |
22 | Mizuta K , Fukunaga R , Fukuda K , et al . Development and characterization of a flat laminate vapor chamber[J]. Applied Thermal Engineering, 2016, 104: 461-471. |
23 | Aoki H , Shioya N , Ikeda M , et al . Development of ultra thin plate-type heat pipe with less than 1 mm thickness[C]//26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. Japan : IEEE, 2010: 207-212. |
24 | Yang K S , Tu C W , Zhang W H , et al . A novel oxidized composite braided wires wick structure applicable for ultra-thin flattened heat pipes[J]. International Communications in Heat & Mass Transfer, 2017, 88: 84-90. |
25 | Li Y , Zhou W J , He J B , et al . Thermal performance of ultra-thin flattened heat pipes with composite wick structure[J]. Applied Thermal Engineering, 2016, 102: 487-499. |
26 | Lee K C , Chung S L . Ultra-thin heat pipe and manufacturing method thereof: US20100319882[P]. 2010-12-23. |
27 | Zhou W J , Xie P D , Li Y , et al . Thermal performance of ultra-thin flattened heat pipes[J]. Applied Thermal Engineering, 2017, 117: 773-781. |
28 | Ding C S , Soni G , Bozorgi P , et al . A flat heat pipe architecture based on nanostructured titania[J]. Journal of Microelectromechanical Systems, 2010, 19(4): 878-884. |
29 | Lewis R , Liew L A , Xu S S , et al . Microfabricated ultra-thin all-polymer thermal ground planes[J]. Science Bulletin, 2015, 60(7): 701-706. |
30 | Ivanova M , Lai A , Gillot C , et al . Design, fabrication and test of silicon heat pipes with radial microcapillary grooves[C]//Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems. San Diego, USA: IEEE, 2009: 545-551. |
31 | Oshman C , Li Q , Liew L A , et al . Flat flexible polymer heat pipes[J]. Journal of Micromechanics & Microengineering, 2012, 23(1): 15001-15006. |
32 | Kline S J , McClintock F A . Describing uncertainties in single-sample experiments[J]. Mechanical Engineering, 1953, 75(1): 3-8. |
33 | Li Y , Li Z X , Zhou W J , et al . Experimental investigation of vapor chambers with different wick structures at various parameters[J]. Experimental Thermal & Fluid Science, 2016, 77: 132-143. |
34 | Ji X B , Li H C , Xu J L , et al . Integrated flat heat pipe with a porous network wick for high-heat-flux electronic devices[J]. Experimental Thermal & Fluid Science, 2017, 85: 119-131. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[4] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[5] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[6] | 申利梅, 胡博兴, 谢雨霏, 曾伟豪, 张晓屿. 超薄平板热管传热性能的实验研究[J]. 化工学报, 2023, 74(S1): 198-205. |
[7] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[8] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[9] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[10] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[11] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[12] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[13] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[14] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[15] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 515
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 634
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||