化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2717-2726.DOI: 10.11949/0438-1157.20190055
收稿日期:
2019-01-16
修回日期:
2019-04-09
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
周云龙
作者简介:
周云龙(1960—), 男,博士,教授,<email>neduzyl@163.com</email>
基金资助:
Yunlong ZHOU(),Xiaoyuan YE,Dongyao LIN
Received:
2019-01-16
Revised:
2019-04-09
Online:
2019-07-05
Published:
2019-07-05
Contact:
Yunlong ZHOU
摘要:
将玉米秸秆加入Pt/TiO2的悬浊液中,在紫外光照射下实现了光催化分解水制氢速率的提升。通过SEM、XRD、FT-IR和TGA对玉米秸秆在光催化反应后的结构特征的变化进行了表征和分析讨论。通过单因素实验和正交实验研究了辐照时间、玉米秸秆颗粒浓度、秸秆颗粒粒径和催化剂浓度对氢气产率及产氢量的影响。实验结果表明:催化剂浓度和秸秆颗粒浓度对产氢的影响较大。产氢量随着催化剂浓度的增加先增后减,在催化剂浓度为4
中图分类号:
周云龙, 叶校源, 林东尧. 在紫外光下以玉米秸秆为牺牲剂提升光催化分解水制氢[J]. 化工学报, 2019, 70(7): 2717-2726.
Yunlong ZHOU, Xiaoyuan YE, Dongyao LIN. Photocatalytic hydrogen evolution by using corn stover as sacrificial agent under UV light irradiation[J]. CIESC Journal, 2019, 70(7): 2717-2726.
纤维素 | 半纤维素 | 木质素 |
---|---|---|
24.7 | 33.4 | 11.9 |
表1 玉米秸秆成分组成Table 1 Composition of corn stover/%
纤维素 | 半纤维素 | 木质素 |
---|---|---|
24.7 | 33.4 | 11.9 |
条件 | 产氢量/ml | |
---|---|---|
可见光 | 紫外-可见光 | |
去离子水 | 0 | 0 |
去离子水+催化剂(TiO2) | 0 | 0 |
去离子水+催化剂(Pt/TiO2) | 0 | 0.038 |
去离子水+玉米秸秆颗粒 | 0 | 0 |
去离子水+玉米秸秆颗粒+催化剂(TiO2) | 0 | 0 |
去离子水+玉米秸秆颗粒+催化剂(Pt/TiO2) | 0 | 0.829 |
表2 不同条件下的产氢量
Table 2 Hydrogen production under different conditions
条件 | 产氢量/ml | |
---|---|---|
可见光 | 紫外-可见光 | |
去离子水 | 0 | 0 |
去离子水+催化剂(TiO2) | 0 | 0 |
去离子水+催化剂(Pt/TiO2) | 0 | 0.038 |
去离子水+玉米秸秆颗粒 | 0 | 0 |
去离子水+玉米秸秆颗粒+催化剂(TiO2) | 0 | 0 |
去离子水+玉米秸秆颗粒+催化剂(Pt/TiO2) | 0 | 0.829 |
Photocatalyst | Reaction medium | Light source | P/W | T/℃ | Production rates/(μmol/(g cat·h)) | Ref. |
---|---|---|---|---|---|---|
H2 | ||||||
Pt(1%)/P25TiO2 | H2O/corn stover(0.3 | Xe | 300 | 5 | 21.26① | this work |
Pt(0.32%)/TiO2 | H2O/cellulose(6.7 g/L) | UVA(366 nm) | 15×4 | — | 17① | [14] |
Pt(0.32%)/TiO2 | H2O/rice husk (6.7 g/L) | UVA(366 nm) | 15×4 | — | 6① | [14] |
Pt(0.32%)/P25TiO2 | H2O/alfalfa stems(6.7 g/L) | UVA (366 nm) | 15×4 | — | 100 | [14] |
Pt(5%)/TiO2 | H2O/rice plant(l/s, 0.3%) | Xe | 500 | r.t. | 8 | [20] |
Pt(5%)/TiO2 | H2O/seaweed(l/s, 0.3%) | Xe | 500 | r.t. | 25 | [24] |
Pt(5%)/TiO2 | H2O/sweet potato(l/s, 0.3%) | Xe | 500 | r.t. | 13 | [24] |
LaMnO3/CdS | sewage sludge | Xe | 300 | — | 129 | [36] |
表3 不同生物质原料为牺牲剂的光催化制氢对比
Table 3 Photocatalytic hydrogen production comparison of different raw biomass as sacrificial agents
Photocatalyst | Reaction medium | Light source | P/W | T/℃ | Production rates/(μmol/(g cat·h)) | Ref. |
---|---|---|---|---|---|---|
H2 | ||||||
Pt(1%)/P25TiO2 | H2O/corn stover(0.3 | Xe | 300 | 5 | 21.26① | this work |
Pt(0.32%)/TiO2 | H2O/cellulose(6.7 g/L) | UVA(366 nm) | 15×4 | — | 17① | [14] |
Pt(0.32%)/TiO2 | H2O/rice husk (6.7 g/L) | UVA(366 nm) | 15×4 | — | 6① | [14] |
Pt(0.32%)/P25TiO2 | H2O/alfalfa stems(6.7 g/L) | UVA (366 nm) | 15×4 | — | 100 | [14] |
Pt(5%)/TiO2 | H2O/rice plant(l/s, 0.3%) | Xe | 500 | r.t. | 8 | [20] |
Pt(5%)/TiO2 | H2O/seaweed(l/s, 0.3%) | Xe | 500 | r.t. | 25 | [24] |
Pt(5%)/TiO2 | H2O/sweet potato(l/s, 0.3%) | Xe | 500 | r.t. | 13 | [24] |
LaMnO3/CdS | sewage sludge | Xe | 300 | — | 129 | [36] |
水平 | A 秸秆颗粒 浓度×103/(g/ml) | B 催化剂 浓度×102(g/ml) | C 秸秆颗粒 粒径/μm |
---|---|---|---|
1 | 0.1 | 0.3 | 1700~830 |
2 | 0.3 | 0.5 | 380~250 |
3 | 0.5 | 0.7 | ≤180 |
表4 正交实验因素水平
Table 4 Factor and level of orthogonal test
水平 | A 秸秆颗粒 浓度×103/(g/ml) | B 催化剂 浓度×102(g/ml) | C 秸秆颗粒 粒径/μm |
---|---|---|---|
1 | 0.1 | 0.3 | 1700~830 |
2 | 0.3 | 0.5 | 380~250 |
3 | 0.5 | 0.7 | ≤180 |
实验号 | A | B | C | 产氢量/ml |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1.154 |
2 | 1 | 2 | 2 | 1.088 |
3 | 1 | 3 | 3 | 0.367 |
4 | 2 | 1 | 2 | 1.805 |
5 | 2 | 2 | 3 | 1.812 |
6 | 2 | 3 | 1 | 0.950 |
7 | 3 | 1 | 3 | 1.466 |
8 | 3 | 2 | 1 | 1.801 |
9 | 3 | 3 | 2 | 1.079 |
k1 | 0.870 | 1.475 | 1.302 | |
k2 | 1.522 | 1.567 | 1.324 | |
k3 | 1.449 | 0.799 | 1.215 | |
R | 0.652 | 0.768 | 0.109 |
表5 正交实验结果
Table 5 Results of orthogonal design
实验号 | A | B | C | 产氢量/ml |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1.154 |
2 | 1 | 2 | 2 | 1.088 |
3 | 1 | 3 | 3 | 0.367 |
4 | 2 | 1 | 2 | 1.805 |
5 | 2 | 2 | 3 | 1.812 |
6 | 2 | 3 | 1 | 0.950 |
7 | 3 | 1 | 3 | 1.466 |
8 | 3 | 2 | 1 | 1.801 |
9 | 3 | 3 | 2 | 1.079 |
k1 | 0.870 | 1.475 | 1.302 | |
k2 | 1.522 | 1.567 | 1.324 | |
k3 | 1.449 | 0.799 | 1.215 | |
R | 0.652 | 0.768 | 0.109 |
1 | 崔明, 赵立欣, 田宜水, 等. 中国主要农作物秸秆资源能源化利用分析评价[J]. 农业工程学报, 2008, 24(12): 291-296. |
CuiM, ZhaoL X, TianY S, et al. Analysis and evaluation on energy utilization of main crop straw resources in China[J]. Transactions of the CSAE, 2008, 24(12) : 291-296. | |
2 | 黄浩, 胡国新. Ca(OH)2对生物质水蒸气气化制氢的影响[J]. 上海交通大学学报, 2007, 41(12): 1930-1933. |
HuangH, HuG X. The influence of Ca(OH)2 on hydrogen production from biomass by steam gasification[J]. Journal of Shanghai Jiaotong University, 2007, 41(12): 1930-1933. | |
3 | 刘刚, 孙丽娜, 李久海, 等.秸秆燃烧排放的正构烷烃及其碳同位素组成特征[J]. 中国环境科学, 2012, 32(12): 2184-2191. |
LiuG, SunL N, LiJ H, et al. Chemical and stable carbon isotopic composition of n-alkanes in maize straw and its smoke[J]. China Environmental Science, 2012, 32(12): 2184-2191. | |
4 | 李日强, 席玉英, 曹志亮, 等. 纤维素类废弃物的综合利用[J]. 中国环境科学, 2002, (1): 25-28. |
LiR Q, XiY Y, CaoZ L, et al. Complex use of wastes containing cellulose[J]. China Environmental Science, 2002, (1): 25-28. | |
5 | 王艳, 郝炜伟, 程轲, 等. 秸秆露天焚烧典型大气污染物排放因子[J]. 中国环境科学, 2018, 38(6): 2055-2061. |
WangY, HeW W, ChengK, et al. Emission factors of typical air pollutants from open burning of crop straws[J]. China Environmental Science, 2018, 38(6): 2055-2061. | |
6 | 吕鹏梅, 熊祖鸿, 王铁军, 等. 生物质流化床气化制取富氢燃气的研究[J]. 太阳能学报, 2003, 24(6): 758-764. |
LyuP M, XiongZ H, WangT J, et al. Biomass gasification in a fluidized bed to produce hydrogen rich gas[J]. Acta Energiae Solaris Sinica, 2003, 24(6): 758-764. | |
7 | 刘江华, 方新湘, 周华. 我国氢能源开发与生物制氢研究现状[J]. 新疆农业科学, 2004, 41(s1): 85-87. |
LiuJ H, FangX X, ZhouH. The state of hydrogen energy R&D and biohydrogen study in China[J]. Xinjiang Agricultural Sciences, 2004, 41(s1): 85-87. | |
8 | FujishimaA, HondaK. Photolysis-decomposition of water at surface of an irradiated semiconductor[J]. Nature, 1972, 238(1): 238-245. |
9 | 郭烈锦, 赵亮. 可再生能源制氢与氢能动力系统研究[J]. 中国科学基金, 2002, 16(4): 210-212. |
GuoL J, ZhaoL. Hydrogen production using solar energy and the study on hydrogen power system[J]. Bull. Natl. Nat. Sci. Found. China., 2002, 16(4): 210-212. | |
10 | 尹忠环, 李越湘, 彭绍琴, 等. 污染物乙醇胺Pt/TiO2光催化制氢[J]. 分子催化, 2007, 21(2): 155-161. |
YiZ H, LiY X, PengS Q, et al. Photocatalytic hydrogen generation in the presence of ethanolamines over Pt /TiO2[J]. Journal of Molecular Catalysis(China), 2007, 21(2): 155-161. | |
11 | LiuH, ZhouD, LiX, et al. Photoelectrocatalytic degradation of Rhodamine B using mesh Ti/TiO2 electrode[J]. Chinese Journal of Enviromental Science, 2002, 23(23): 47-51. |
12 | WangD, ZouY, WenS, et al. A passivated codoping approach to tailor the band edges of TiO2 for efficient photocatalytic degradation of organic pollutants[J]. Applied Physics Letters, 2009, 95(1): 829. |
13 | KadamS, MateV R, PanmandR, et al. A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light[J]. RSC Advances, 2014, 4(105): 60626-60635. |
14 | SpeltiniA, SturiniM, DondiD, et al. Sunlight-promoted photocatalytic hydrogen gas evolution from water-suspended cellulose: a systematic study[J]. Photochemical & Photobiological Sciences Official Journal of the European Photochemistry Association & the European Society for Photobiology, 2014, 13(10): 1410. |
15 | 董庆华. 半导体光催化[J]. 影像科学与光化学, 1993, (2): 78-83. |
DongQ H. Semiconductor photocatalysis[J]. Photographic Science and Photochemistry, 1993, (2): 78-83. | |
16 | CurcóD, GiménezJ, AddardakA, et al. Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants[J]. Catalysis Today, 2002, 76(2): 177-188. |
17 | HeydukA F, NoceraD G. Hydrogen produced from hydrohalic acid solutions by a two-electron mixed-valence photocatalyst[J]. Science, 2001, 293(5535): 1639-1641. |
18 | KatoH, AsakuraK, KudoA. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure[J]. Journal of the American Chemical Society, 2003, 125(10): 3082-3089. |
19 | SakataT, KawaiT. Conversion of carbohydrate into hydrogen fuel by a photocatalytic process[J]. Nature, 1980, 286: 474-476. |
20 | SakataT, KawaiT. Heterogeneous photocatalytic production of hydrogen and methane from ethanol and water[J]. Chemical Physics Letters, 1981, 80(2): 341-344. |
21 | SakataT, KawaiT, HashimotoK. Heterogeneous photocatalytic reactions of organic acids and water. New reaction paths besides the photo-Kolbe reaction[J]. Journal of Physical Chemistry, 1984, 88(11): 2344-2350. |
22 | KawaiT, SakataT. Hydrogen evolution from water using solid carbon and light energy[J]. Nature, 1979, 282(5736): 283-284. |
23 | YoshidaH, HiraoK, NishimotoJ I, et al. Hydrogen production from methane and water on platinum loaded titanium oxide photocatalysts[J]. The Journal of Physical Chemistry C, 2008, 112(14): 5542-5551. |
24 | KawaiT, SakataT. Photodecomposition of water by using organic compounds[J]. Chem. Jpn., 1981, 39: 589–602. |
25 | 刘芳, 樊丰涛, 吕玉翠, 等. 石墨烯/TiO2复合材料光催化降解有机污染物的研究进展[J]. 化工学报, 2016, 67(5): 1635-1643. |
LiuF, FanF T, LyuY C, et al. Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J]. CIESC Journal, 2016, 67(5): 1635-1643. | |
26 | 孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5): 1743-1756. |
SunY, YuL L, HuangH B, et al. Research trend and practical development of advanced oxidation process on degradation of recalcitrant organic wastewater[J]. CIESC Journal, 2017, 68(5): 1743-1756. | |
27 | ZhangG, NiC, HuangX, et al. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis[J]. Chemical Communications, 2016, 52(8): 1673-1676. |
28 | WakerleyD W, KuehnelM F, OrchardK L, et al. Solar-driven reforming of lignocellulose to H2 with a CdS/CdOx photocatalyst[J]. Nature Energy, 2017, 2(4): 17021. |
29 | YangJ C, KimY C, ShulY G, et al. Characterization of photoreduced Pt/TiO2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO2 catalysts[J]. Applied Surface Science, 1997, 121(1): 525-529. |
30 | HuF, JungS, RagauskasA. Pseudo-lignin formation and its impact on enzymatic hydrolysis[J]. Bioresource Technology, 2012, 117(4): 7-12. |
31 | 张浩, 朱庆明. 工业废水处理中纳米TiO2光催化技术的应用[J]. 工业水处理, 2011, 31(5): 17-20. |
ZhangH, ZhuQ M. Applications of nano-TiO2 photocatalytic technology to the treatment of industrial wastewater[J]. Industrial Water Treatment, 2011, 31(5): 17-20. | |
32 | PingW, LiuJ, LiZ. Effect of Pt loading and calcination temperature on the photocatalytic hydrogen production activity of TiO2 microspheres[J]. Ceramics International, 2013, 39(5): 5387-5391. |
33 | AntonyR P, MathewsT, RameshC, et al. Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8268-8276. |
34 | 唐玉朝, 李薇, 胡春. TiO2形态结构与光催化活性关系的研究[J]. 化学进展, 2003, 15(5): 379-384. |
TangY C, LiW, HuC. Studies on morphological structure and photoactivity of TiO2 heterogeneous photocatalysts[J]. Progress in Chemistry, 2003, 15(5): 379-384. | |
35 | PugaA V. Photocatalytic production of hydrogen from biomass-derived feedstocks[J]. Coordination Chemistry Reviews, 2016, 315: 1-66. |
36 | MalatoS, MaldonadoM I, Fernández-IbáñezP, et al. Decontamination and disinfection of water by solar photocatalysis: the pilot plants of the Plataforma Solar de Almeria[J]. Materials Science in Semiconductor Processing, 2016, 42(1): 15-23. |
37 | 吴树新, 尹燕华, 何菲, 等. 掺铜TiO2光催化剂光催化氧化还原性能的研究[J]. 感光科学与光化学, 2005, 23(5): 333-335. |
WuS X, YinY H, HeF, et al. Photocatalytic redox performance of copper doped TiO2 photocatalyst[J]. Photographic Science and Photochemistry, 2005, 23(5): 333-335. | |
38 | 李梓木. 可抽提物对玉米秸秆水热预处理效果的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
LiZ M. Study on influences of extractives on hydrothermal pretreatment of corn stover[D]. Harbin: Harbin Institute of Technology, 2016. | |
39 | LiaoG, ChenS, QuanX, et al. Remarkable improvement of visible light photocatalysis with PANI modified core-shell mesoporous TiO2 microspheres[J]. Applied Catalysis B Environmental, 2011, 102(1/2): 126-131. |
40 | FahmaF, IwamotoS, HoriN, et al. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch (OPEFB)[J]. Cellulose, 2010, 17(5): 977-985. |
41 | XiaoB, SunX F, SunR C. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose from maize stems, rye straw, and rice straw[J]. Polymer Degradation & Stability, 2001, 74(2): 307-319. |
42 | SainM, PanthapulakkalS. Bioprocess preparation of wheat straw fibers and their characterization[J]. Industrial Crops & Products, 2006, 23(1): 1-8. |
43 | 廖艳芬, 王树荣, 骆仲泱, 等. 纤维素热裂解过程动力学的试验分析研究[J]. 浙江大学学报(工学版), 2002, 36(2): 172-176. |
LiaoY F, WangS R, LuoZ Y, et al. Research on cellulose pyrolysis kinetics[J]. Journal of Zhejiang University ( Engineering Science), 2002, 36(2): 172-176. | |
44 | YaoF, WuQ, LeiY, et al. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis[J]. Polymer Degradation and Stability, 2008, 93(1): 90-98. |
45 | LvG, WuS, YangG, et al. Comparative study of pyrolysis behaviors of corn stalk and its three components[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 185-193. |
46 | ChangG Y, WangC, YuC, et al. Improved enzymatic hydrolysis of corn stover by photonanocatalyst-aided (MSPNA) ammonia pretreatment[C]//AIChE Meeting. 2011. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[4] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[7] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[8] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[11] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[12] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[13] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[14] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[15] | 白天昊, 王晓雯, 杨梦滋, 段新伟, 米杰, 武蒙蒙. 类水滑石衍生锌基氧化物高温煤气脱硫过程中COS释放行为及其抑制研究[J]. 化工学报, 2023, 74(4): 1772-1780. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||