化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3346-3352.doi: 10.11949/0438-1157.20190401

• 流体力学与传递现象 • 上一篇    下一篇

局部低温诱发过冷三水醋酸钠释能特性实验研究

王慧丽(),周国兵()   

  1. 华北电力大学能源动力与机械工程学院,北京 102206
  • 收稿日期:2019-04-17 修回日期:2019-05-21 出版日期:2019-09-05 发布日期:2019-09-05
  • 通讯作者: 周国兵 E-mail:w17073224271@163.com;zhougb@ncepu.edu.cn
  • 作者简介:王慧丽(1996—),女,硕士研究生,w17073224271@163.com
  • 基金资助:
    北京市自然科学基金项目(3192034)

Experimental investigation on discharging characteristics of supercooled sodium acetate trihydrate induced by local cooling

Huili WANG(),Guobing ZHOU()   

  1. School of Energy, Power and Mechanic Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2019-04-17 Revised:2019-05-21 Published:2019-09-05 Online:2019-09-05
  • Contact: Guobing ZHOU E-mail:w17073224271@163.com;zhougb@ncepu.edu.cn

摘要:

利用半导体制冷局部低温诱发稳定过冷的三水醋酸钠溶液凝固,实验研究不同含水量、样品质量、输入功率等条件下过冷溶液结晶诱导期及释热特性。结果表明:随样品含水量增加,整体呈现结晶诱导期增加,释热温度下降的趋势,含水量44%作为较理想的体系配比,结晶诱导期为2 min,稳定放热温度达52.8℃;诱发过程中制冷装置输入功率越大,容器壁面降温越快,较容易触发,功率为280 W的结晶诱导期是功率为70 W的 1/3;样品质量越大,结晶诱导期越短,稳定放热温度相对较高,放热时间趋长。实验结果为稳定过冷水合盐局部低温诱发凝固释能系统设计提供依据。

关键词: 局部低温, 三水醋酸钠, 稳定过冷, 结晶, 相变, 含水量, 太阳能

Abstract:

Experiments are performed on the effect of local cooling by thermoelectric cooler on triggering solidification of supercooled sodium acetate trihydrate (SAT). Factors such as the water content, the SAT sample mass as well as the input power of the thermoelectric cooler are examined about their effects on the crystallization activation and discharging characteristics. The results showed that with the increase of water content, the overall crystallization induction period increased, the heat release temperature decreased, and the water content of 44% was used as the ideal system ratio. The crystallization induction period was 2 min and the stable exothermic temperature was 52.8℃. The higher the input power(P) is, the faster the unit is cooled and the induction time period for P=280 W is one third of that for P=70 W. The probability of nucleation of samples is increased for higher sample mass and then the induction time is shorter with higher discharging temperature and longer heat release time.

Key words: local cooling, sodium acetate trihydrate, stable supercooling, crystallization, phase change, water content, solar energy

中图分类号: 

  • TK 02

图1

实验装置简图"

图2

局部低温诱发过冷水合盐溶液凝固机理"

图3

两种冷却方式下壁面温度随时间变化曲线"

图4

循环过程中容器壁面温度随时间变化曲线"

图5

含水量44%触发过程容器壁面温度随时间变化曲线"

图6

不同含水量下样品壁面温度及平均诱导时间变化"

图7

不同样品质量下壁面温度及平均诱导时间变化"

图8

不同输入功率下壁面温度及平均诱导时间变化"

1 Schultz J M . Phase change material storage with supercooling[C]//Streicher W. IEA SHC Task 32—Advanced Storage Concepts for Solar and Low Energy Buildings. Austria: Graz University of Technology Austria, 2008: 68-84.
2 Streicher W . Final report of Subtask C “Phase Change Materials” The overview[R]. IEA Solar Heating and Cooling Programme Task 32—Advanced Storage Concepts for Solar And Low Energy Buildings. 2008.
3 Furbo S , Fan J H , Andersen E , et al . Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture[J]. Energy Procedia, 2012, 30(1): 260-269.
4 Furbo S , Dragsted J , Chen Z , et al . Towards seasonal heat storage based on stable super cooling of sodium acetate trihydrate[C]//EuroSun 2010 Congress Proceedings. Graz, Austria, 2010.
5 Zhou G B , Xiang Y T . Experimental investigations on stable supercooling performance of sodium acetate trihydrate PCM for thermal storage[J]. Solar Energy, 2017, 155: 1261-1272.
6 Dannemand M , Johansen J B , Kong W Q , et al . Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing stable supercooling[J]. Applied Energy, 2016, 177: 591-601.
7 Dannemand M , Dragsted J , Fan J H , et al . Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures[J]. Applied Energy, 2016, 169: 72-80.
8 Kong W Q , Dannemand M , Johansen J B , et al . Ageing stability of sodium acetate trihydrate with and without additives for seasonal heat storage[C] // ISES Solar World Congress. Daegu, Korea, 2015.
9 Cabeza L F , Svensson G , HieblerS, et al . Thermal performance of sodium acetate trihydrate thickened with different materials as phase change energy storage material[J]. Applied Thermal Engineering, 2003, 23(13): 1697-1704.
10 崔文龙, 袁艳平, 孙亮亮, 等 . 三水合乙酸钠在相变单元的传热特性及其过冷度改善[J]. 化工学报, 2016, 67(S2): 149-158.
Cui W L , Yuan Y P , Sun L L , et al . Thermal property in phase-change units and improvement for supercoiling of sodium acetatetrihydrate[J]. CIESC Journal, 2016, 67(S2): 149-158.
11 张雪梅, 蔡路茵, 苏忠杰, 等 . 超声波对三水醋酸钠相分离及结晶的影响[J]. 化工学报, 2010, 61(1): 104-108.
Zhang X M , Cai L Y , Su Z J , et al . Effects of ultrasound on phase separation and crystallization of sodium acetate trihydrate[J]. CIESC Journal, 2010, 61(1): 104-108.
12 Cabeza L F , Illa J , Roca J , et al . Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36 oC temperature range[J]. Material and Corrosion, 2001, 52(2): 140-146.
13 Zhou G B , Zhu M C , Xiang Y T . Effect of percussion vibration on solidification of supercooled salt hydrate PCM in thermal storage unit[J]. Renewable Energy, 2018, 126: 537-544.
14 Rogerson M A , Cardoso S S S . Solidification in heat packs(Ⅲ): Metallic trigger[J]. AIChE Journal, 2003, 49(2): 522-529.
15 Araki N , Futamura M , Makino A , et al . Measurements of thermophysical properties of sodium acetate hydrate[J]. International Journal of Thermophysics, 1995, 16(6): 1455-1466.
16 Englmair G , Moser C , Furbo S , et al . Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system[J]. Applied Energy, 2018, 221: 522-534.
17 潘利红, 黄利维, 岳桥, 等 . 振动对无机盐相变材料过冷度的影响[J]. 浙江工业大学学报, 2008, 36(6): 655-658.
Pan L H , Huang L W , Yue Q , et al . Influence of vibration on the supercooling relex of inorganic salt solution as a phase change material[J]. Journal of Zhejiang University of Technology, 2008, 36(6): 655-658.
18 Seo K , Suzuki S , Kinoshita T , et al . Effect of ultrasonic irradiation on the crystallization of sodium acetate trihydrate utilized as heat storage material[J]. Chemical Engineering and Technology, 2012, 35(6): 1013-1016.
19 Sandnes B . Exergy efficient production, storage and distribution of solar energy[D]. Oslo : University of Oslo, 2003.
20 Englmair G , Jiang Y L , Dannemand M , et al . Crystallization by local cooling of supercooled sodium acetate trihydrate composites for long-term heat storage[J]. Energy and Buildings, 2018, 180: 159-171.
21 Disalvo F J . Thermoelectric cooling and power generation[J]. Science, 1999, 285(5428): 703-706.
22 Bansal P K , Martin A . Comparative study vapor compression, thermoelectric and absorption refrigerators[J]. International Journal of Energy Research, 2015, 24(2): 93-107.
23 Jin X , Medina M A , Zhang X , et al . Phase-change characteristic analysis of partially melted sodium acetate trihydrate using DSC[J]. International Journal of Thermophysics, 2014, 35(1): 45-52.
24 丁益民, 阎立诚 . 水合盐储热材料的成核作用[J]. 化学物理学报, 1996, (1): 83-86.
Ding Y M , Yan L C . Nucleation of salt-hydrate as the thermal energy storage material[J]. Chinese Journal of Chemical Physics, 1996, (1): 83-86.
25 Chinese Pharmacopoeia Commission . Pharmacopoeia of the People’s Republic of China 2010 Edition[M]. Beijing: China Medical Science Press, 2010.
26 Sharma S K , Jotshi C K , Kumar S . Thermal stability of sodium salt hydrates for solar energy storage applications[J]. Solar Energy, 1990, 45(3): 177-181.
27 Keinänen M . Latent heat recovery from supercooled sodium acetate trihydrate using a brush heat exchanger[D]. Espoo: Helsinki University of Technology, 2007.
28 Kong W Q , Dannemand M , Berg Johansen J , et al . Experimental investigations on phase separation for different heights of sodium acetate water mixtures under different conditions[J]. Applied Thermal Engineering, 2019, 148: 796-805.
29 Rad F M , Fung A S . Solar community heating and cooling system with borehole thermal energy storage—review of systems[J]. Renewable and Sustainable Energy Reviews, 2016, 60: 1550-1561.
30 Dietz P L , Brukner J S , Hollingsworth C A . Linear crystallization velocities of sodium acetate in supersaturated solutions[J]. The Journal of Physical Chemistry, 1957, 61(7): 944-948.
31 Rauls M , Bartosch K , Kind M , et al . The influence of impurities on crystallization kinetics — a case study on ammonium sulfate[J]. Journal of Crystal Growth, 2000, 213(1): 116-128.
32 Wei L L , Kenichi O . Supercooling and solidification behavior of phase change[J]. ISIJ International, 2010, 50 (9): 1265-1269.
[1] 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927.
[2] 吴学红, 栾林林, 陈亚南, 赵敏, 吕财, 刘勇. 可降解柔性相变薄膜的制备及其热性能[J]. 化工学报, 2023, 74(4): 1818-1826.
[3] 李明川, 樊栓狮, 徐赋海, 卢惠东, 李晓军. 水合物热分解Stefan相变模型解的存在性及Laplace变换求解[J]. 化工学报, 2023, 74(4): 1746-1754.
[4] 尹驰, 张正国, 凌子夜, 方晓明. 含石蜡@二氧化硅纳米胶囊和碳纤维的相变热界面材料及其散热性能[J]. 化工学报, 2023, 74(4): 1795-1804.
[5] 苏晓丹, 朱干宇, 李会泉, 郑光明, 孟子衡, 李防, 杨云瑞, 习本军, 崔玉. 湿法磷酸半水工艺考察与石膏结晶过程研究[J]. 化工学报, 2023, 74(4): 1805-1817.
[6] 杨灿, 孙雪琦, 尚明华, 张建, 张香平, 曾少娟. 相变离子液体体系吸收分离CO2的研究现状及展望[J]. 化工学报, 2023, 74(4): 1419-1432.
[7] 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274.
[8] 颜少航, 赖天伟, 王彦武, 侯予, 陈双涛. 微间隙内R134a空化可视化实验研究[J]. 化工学报, 2023, 74(3): 1054-1061.
[9] 陈毓明, 历伟, 严翔, 王靖岱, 阳永荣. 初生态聚乙烯聚集态结构调控研究进展[J]. 化工学报, 2023, 74(2): 487-499.
[10] 周璇, 李孟亚, 孙杰, 岑振凯, 吕强三, 周立山, 王海涛, 韩丹丹, 龚俊波. 添加剂对氨基酸晶体生长的影响[J]. 化工学报, 2023, 74(2): 500-510.
[11] 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629.
[12] 杜江龙, 杨雯棋, 黄凯, 练成, 刘洪来. 复合相变材料/空冷复合式锂离子电池模块散热性能[J]. 化工学报, 2023, 74(2): 674-689.
[13] 党迎喜, 谈朋, 刘晓勤, 孙林兵. 辐射冷却和太阳能加热驱动的CO2变温捕获[J]. 化工学报, 2023, 74(1): 469-478.
[14] 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44.
[15] 张鑫, 许蕊, 路馨语, 牛永安. SiO2@BiOCl-Bi24O31Cl10核壳微球的合成及光催化[J]. 化工学报, 2022, 73(8): 3636-3646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!