1 |
Gao M R , Xu Y F , Jiang J , et al . Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices[J]. Chem. Soc. Rev., 2013, 42(7): 2986-3017.
|
2 |
Cao H L , Wang X , Chen X , et al . Hollow cubic double layer structured Cu7S4/NiS nanocomposites for high-performance supercapacitors[J]. J.Mater. Chem. A, 2017, 5(39): 20729-20736.
|
3 |
Gu W , Yushin G . Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene[J]. Wires Energy Environ., 2014, 3(5): 424-473.
|
4 |
Zhang L L , Zhao X S . Carbon-based materials as supercapacitor electrodes[J]. Chem. Soc. Rev., 2009, 38(9): 2520-2531.
|
5 |
Biswal M , Banerjee A , Deo M , et al . From dead leaves to high energy density supercapacitors[J]. Energy Environ. Sci., 2013, 6(4): 1249-1259.
|
6 |
郝品 . 可再生资源制备的碳气凝胶及其复合电极材料的电化学性能研究[D]. 济南: 山东大学, 2015.
|
|
Hao P . Electrochemical properties of carbon aerogels prepared from renewable resources and their composite electrode materials[D]. Jinan: Shandong University, 2015.
|
7 |
Zhao S , Wang C Y , Chen M M , et al . Potato starch-based activated carbon spheres as electrode material for electrochemical capacitor[J]. J. Phys. Chem. Solids, 2009, 70(9): 1256-1260.
|
8 |
Teng H , Yeh T S , Hsu L Y . Preparation of activated carbon from bituminous coal with phosphoric acid activation[J]. Carbon, 1998, 36(9): 1387-1395.
|
9 |
Wang T H , Tan S T , Liang C . Preparation and characterization of activated carbon from wood via microwave-induced ZnCl2 activation[J]. Carbon, 2009, 47(7): 1880-1883.
|
10 |
Volperts A , Dobele G , Zhurinsh A , et al . Wood-based activated carbons for supercapacitor electrodes with a sulfuric acid electrolyte[J]. New Carbon Mater., 2017, 32(4): 319-326.
|
11 |
Guan T T , Zhao J H , Zhang G L , et al . Insight into controllability and predictability of pore structures in pitch-based activated carbons[J]. Micropor. Mesopor. Mater., 2018, 271: 118-127.
|
12 |
Yan S , Lin J J , Liu P , et al . Preparation of nitrogen-doped porous carbons for high-performance supercapacitor using biomass of waste lotus stems[J]. RSC Adv., 2018, 8(13): 6806-6813.
|
13 |
Guo N N , Li M , Wang Y , et al . Soybean root-derived hierarchical porous carbon as electrode material for high-performance supercapacitors in ionic liquids[J]. ACS Appl. Mater. Inter., 2016, 8(49): 33626-33634.
|
14 |
Yu K F , Zhu H , Qi H , et al . High surface area carbon materials derived from corn stalk core as electrode for supercapacitor[J]. Diam. Relat. Mater., 2018, 88: 18-22.
|
15 |
Chen H , Yu F , Wang G , et al . Nitrogen and sulfur self-doped activated carbon directly derived from elm flower for high-performance supercapacitors[J]. ACS Omega, 2018, 3(4): 4724-4732.
|
16 |
Awasthi G P , Bhattarai D P , Maharjan B , et al . Synthesis and characterizations of activated carbon from Wisteria sinensis seeds biomass for energy storage applications[J]. J. Ind. Eng. Chem., 2019, 72: 265-272.
|
17 |
梁听, 谌春林, 李星 . 爆米花衍生氮掺杂纳米碳的制备及其电化学性能研究[J]. 宁波大学学报(理工版), 2017, 30(3): 60-66.
|
|
Liang T , Chen C L , Li X . Preparation and electrochemical properties of nitrogen-doped carbon nanoparticles derived from popcorn[J]. J. Ningbo Univ. (NSEE), 2017, 30(3): 60-66.
|
18 |
Zhan C Z , Yu X L , Liang Q H , et al . Flour food waste derived activated carbon for high-performance supercapacitors[J]. RSC Adv., 2016, 6(92): 89391-89396.
|
19 |
Kesavan T , Partheeban T , Vivekanantha M , et al . Hierarchical nanoporous activated carbon as potential electrode materials for high performance electrochemical supercapacitor[J]. Micropor. Mesopor. Mater., 2019, 274: 236-244.
|
20 |
Han Y , Shen N , Zhang S , et al . Fish gill-derived activated carbon for supercapacitor application[J]. J. Alloy. Compd., 2017, 694: 636-642.
|
21 |
Karnan M , Subramani K , Sudhan N , et al . Aloe vera derived activated high-surface-area carbon for flexible and high-energy supercapacitors[J]. ACS Appl. Mater. Inter., 2016, 8(51): 35191-35202.
|
22 |
张佳佳 . 热重分析法同时测定粮食中主要成分含量[D]. 郑州: 河南工业大学, 2017.
|
|
Zhang J J . Simultaneous determination of main components in grain by thermogravimetric analysis[D]. Zhengzhou: Henan University of Technology, 2017.
|
23 |
Su X L , Jiang S , Zheng G P , et al . High-performance supercapacitors based on porous activated carbons from cattail wool[J]. J. Mater. Sci., 2018, 53(12): 9191-9205.
|
24 |
Ahmed S , Ahmed A , Rafat M . Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes[J]. J. Saudi Chem. Soc., 2018, 22(8): 993-1002.
|
25 |
周王帆, 陈新, 曹红亮, 等 . 法国梧桐枯叶基活性炭的制备及其在超级电容器中的应用[J]. 化工学报, 2017, 68(7): 2918-2924.
|
|
Zhou W F , Chen X , Cao H L , et al . Preparation of platanus leaf-based activated carbon and its application to supercapacitors[J]. CIESC Journal, 2017, 68(7): 2918-2924.
|
26 |
Sivachidambaram M , Vijaya J J , Kennedy L J , et al . Preparation and characterization of activated carbon derived from the Borassus flabellifer flower as an electrode material for supercapacitor applications[J]. New J. Chem., 2017, 41(10): 3939-3949.
|
27 |
Peng C , Yan X B , Wang R T , et al . Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes[J]. Electrochim. Acta, 2013, 87: 401-408.
|
28 |
Wang X D , Yun S N , Fang W , et al . Layer-stacking activated carbon derived from sunflower stalk as electrode materials for high-performance supercapacitors[J]. ACS Sustainable Chem. Eng., 2018, 6(9): 11397-11407.
|
29 |
Qu S S , Wan J F , Dai C C , et al . Promising as high-performance supercapacitor electrode materials porous carbons derived from biological lotus leaf[J]. J. Alloy. Compd., 2018, 751: 107-116.
|
30 |
Li Y T , Pi Y T , Lu L M , et al . Hierarchical porous active carbon from fallen leaves by synergy of K2CO3 and their supercapacitor performance[J]. J. Power Sources, 2015, 299: 519-528.
|
31 |
Wang R T , Wang P Y , Yan X B , et al . Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance[J]. ACS Appl. Mater. Inter., 2012, 4(11): 5800-5806.
|
32 |
Xia R Y , Zhou J C , Wu X H , et al . Epipremnum aureum derived porous carbon for high-performance supercapacitors[J]. Mater. Lett., 2018, 216: 158-161.
|
33 |
Guo N N , Li M , Sun X K , et al . Tremella derived ultrahigh specific surface area activated carbon for high performance supercapacitor[J]. Mater. Chem. Phys., 2017, 201: 399-407.
|
34 |
Wei X J , Li Y B , Gao S Y . Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes[J]. J. Mater. Chem. A, 2017, 5(1): 181-188.
|
35 |
Gu W T , Sevilla M , Magasinski A , et al . Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection[J]. Energy Environ. Sci., 2013, 6(8): 2465-2476.
|