化工学报 ›› 2020, Vol. 71 ›› Issue (2): 698-707.DOI: 10.11949/0438-1157.20190771
收稿日期:
2019-07-05
修回日期:
2019-09-23
出版日期:
2020-02-05
发布日期:
2020-02-05
通讯作者:
杜文莉
作者简介:
胡贵华(1974—),男,博士,副研究员,基金资助:
Guihua HU1,2(),Zhencheng YE1,2,Wenli DU1,2()
Received:
2019-07-05
Revised:
2019-09-23
Online:
2020-02-05
Published:
2020-02-05
Contact:
Wenli DU
摘要:
乙烯裂解炉内复杂物理化学过程耦合模拟与优化能够满足乙烯装置对高效率、低污染和低成本的设计和操作要求,对提高乙烯工业的竞争力具有重要意义。针对简单燃烧机理难以准确预测炉膛燃烧生成NOx浓度分布的弊端,提出了在裂解炉使用更准确的简化GRI-Mesh 3.0机理结合涡耗散概念(EDC)模型的方法,并对Sandia Flame D的燃烧过程进行计算流体力学(CFD)模拟,验证了此耦合模型的可靠性。在已建立的燃烧模型的基础上,研究了助燃空气对降低裂解炉NO排放的影响,结果表明:在满足裂解炉热效率的情况下,空气预热温度为300~600 K、过量空气系数为1.1时降低NO的效果最佳。
中图分类号:
胡贵华, 叶贞成, 杜文莉. 助燃空气对乙烯裂解炉NOx排放的影响[J]. 化工学报, 2020, 71(2): 698-707.
Guihua HU, Zhencheng YE, Wenli DU. Effect of combustion-supporting air on NOx emission of ethylene cracking furnace[J]. CIESC Journal, 2020, 71(2): 698-707.
结构 | 直径/长×宽/mm | 温度/K | 速度/(m/s) | 组分/(质量分数) | ||||
---|---|---|---|---|---|---|---|---|
CH4 | O2 | N2 | CO2 | H2O | ||||
主火焰 | 7.2 | 294 | 49.6 | 0.156 | 0.197 | 0.647 | 0 | 0 |
值班火焰 | 18.2 | 1880 | 11.4 | 0 | 0.054 | 0.742 | 0.11 | 0.094 |
空气伴流 | 300×300 | 291 | 0.9 | 0 | 0.23 | 0.77 | 0 | 0 |
表1 Flame D入口速度和组分条件
Table 1 Inlet velocity and composition conditions of Sandia Flame D
结构 | 直径/长×宽/mm | 温度/K | 速度/(m/s) | 组分/(质量分数) | ||||
---|---|---|---|---|---|---|---|---|
CH4 | O2 | N2 | CO2 | H2O | ||||
主火焰 | 7.2 | 294 | 49.6 | 0.156 | 0.197 | 0.647 | 0 | 0 |
值班火焰 | 18.2 | 1880 | 11.4 | 0 | 0.054 | 0.742 | 0.11 | 0.094 |
空气伴流 | 300×300 | 291 | 0.9 | 0 | 0.23 | 0.77 | 0 | 0 |
Firebox structure | Firing condition | Fuel composition/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Length (x-direction)/m | Width (y-direction)/m | Height (z-direction) /m | Number of floor burners | Number of wall burners | Fuel gas ?ow rate in bottom/(kg/s) | Fuel gas ?ow rate in side/(kg/s) | CH4 | H2 | CO | C2H4 |
13.6 | 2.57 | 12.06 | 16 | 32 | 1.2439 | 0.3028 | 98.237 | 1.36 | 0.307 | 0.096 |
表2 裂解炉炉膛结构尺寸和操作条件
Table 2 Structure dimension and operating conditions of cracking furnace
Firebox structure | Firing condition | Fuel composition/%(mass) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Length (x-direction)/m | Width (y-direction)/m | Height (z-direction) /m | Number of floor burners | Number of wall burners | Fuel gas ?ow rate in bottom/(kg/s) | Fuel gas ?ow rate in side/(kg/s) | CH4 | H2 | CO | C2H4 |
13.6 | 2.57 | 12.06 | 16 | 32 | 1.2439 | 0.3028 | 98.237 | 1.36 | 0.307 | 0.096 |
α | 底部烧嘴燃料 流量/(kg/s) | 底部风门入口 流量/(kg/s) | 侧壁烧嘴总 流量/(kg/s) |
---|---|---|---|
1.05 | 0.09375 | 1.70036 | 1.44857 |
1.07 | 0.09375 | 1.73274 | 1.47472 |
1.09 | 0.09375 | 1.76513 | 1.50087 |
1.10 | 0.09375 | 1.78132 | 1.51395 |
1.13 | 0.09375 | 1.82991 | 1.55317 |
1.16 | 0.09375 | 1.87849 | 1.59240 |
1.20 | 0.09375 | 1.94326 | 1.64470 |
表3 不同过量空气系数下的入口条件
Table 3 Inlet conditions under different excess air coefficients
α | 底部烧嘴燃料 流量/(kg/s) | 底部风门入口 流量/(kg/s) | 侧壁烧嘴总 流量/(kg/s) |
---|---|---|---|
1.05 | 0.09375 | 1.70036 | 1.44857 |
1.07 | 0.09375 | 1.73274 | 1.47472 |
1.09 | 0.09375 | 1.76513 | 1.50087 |
1.10 | 0.09375 | 1.78132 | 1.51395 |
1.13 | 0.09375 | 1.82991 | 1.55317 |
1.16 | 0.09375 | 1.87849 | 1.59240 |
1.20 | 0.09375 | 1.94326 | 1.64470 |
α | 反应净生成热/(J/(cm3?s)) | CH4摩尔分数 | 温度/K | NO摩尔生成率/(mol/(cm3?s)) |
---|---|---|---|---|
1.05 | 36.09 | 1.59×10-5 | 2225.53 | 3.03×10-7 |
1.07 | 36.05 | 1.60×10-5 | 2218.58 | 2.89×10-7 |
1.09 | 35.93 | 1.62×10-5 | 2211.42 | 2.75×10-7 |
1.1 | 35.88 | 1.63×10-5 | 2207.03 | 2.68×10-7 |
1.13 | 35.56 | 1.63×10-5 | 2203.82 | 2.62×10-7 |
1.16 | 35.34 | 1.65×10-5 | 2197.88 | 2.51×10-7 |
1.2 | 35.02 | 1.66×10-5 | 2192.88 | 2.42×10-7 |
表4 不同过量空气系数下的模拟结果
Table 4 Simulation results under different excess air coefficients
α | 反应净生成热/(J/(cm3?s)) | CH4摩尔分数 | 温度/K | NO摩尔生成率/(mol/(cm3?s)) |
---|---|---|---|---|
1.05 | 36.09 | 1.59×10-5 | 2225.53 | 3.03×10-7 |
1.07 | 36.05 | 1.60×10-5 | 2218.58 | 2.89×10-7 |
1.09 | 35.93 | 1.62×10-5 | 2211.42 | 2.75×10-7 |
1.1 | 35.88 | 1.63×10-5 | 2207.03 | 2.68×10-7 |
1.13 | 35.56 | 1.63×10-5 | 2203.82 | 2.62×10-7 |
1.16 | 35.34 | 1.65×10-5 | 2197.88 | 2.51×10-7 |
1.2 | 35.02 | 1.66×10-5 | 2192.88 | 2.42×10-7 |
1 | 王菁. 大型燃气乙烯裂解炉燃烧过程的模拟研究[D]. 天津: 天津大学, 2010. |
Wang J. The simulation of the combustion process for the large-scale ethylene cracking furnace [D]. Tianjin: Tianjin University, 2010. | |
2 | 李昌力, 李进锋. 乙烯裂解炉污染物及减排技术[J].石油化工设备技术, 2013, 34(1): 51-55. |
Li C L, Li J F. Pollutants and emission reduction technology of ethylene cracking furnace [J]. Petro-Chemical Equipment Technology, 2013, 34(1): 51-55. | |
3 | 王国清, 周先锋, 石莹, 等. 乙烯裂解炉辐射段技术的研究进展及工业应用[J]. 中国科学: 化学, 2014, 44(11): 1714-1722. |
Wang G Q, Zhou X F, Shi Y, et al. Research progress and industrial application of radiant section technology of ethylene cracking furnace [J]. Scientia Sinica Chimica, 2014, 44(11): 1714-1722. | |
4 | Heynderickx G J, Oprins A J M, Marin G B, et al. Three-dimensional flow patterns in cracking furnaces with long-flame burners [J]. AIChE J., 2001, 47 (2): 388-400. |
5 | 刘时涛, 王宏刚, 钱锋, 等. SL-Ⅱ型工业乙烯裂解炉内燃烧传热与裂解反应的耦合模拟[J]. 化工学报, 2011, 62(5): 1308-1317. |
Liu S T, Wang H G, Qian F, et al. Coupled simulation of combustion with heat transfer and cracking reaction in SL-Ⅱ industrial ethylene pyrolyzer [J]. CIESC Journal, 2011, 62(5): 1308-1317. | |
6 | Hu G H, Wang H G, Qian F. Numerical simulation on flow, combustion and heat transfer of ethylene cracking furnaces [J]. Chemical Engineering Science, 2011, 66: 1600-1611. |
7 | Stefanidis G D, Merci B, Heynderickx G J, et al. CFD simulations of steam cracking furnaces using detailed combustion mechanisms [J]. Computers & Chemical Engineering, 2006, 30(4): 635-649. |
8 | Lu T, Law C K. Toward accommodating realistic fuel chemistry in large-scale computations [J]. Progress in Energy and Combustion Science, 2009, 35: 192-215. |
9 | Hassan G, Pourkashanian M, Ingham D, et al. Predictions of CO and NOx emissions from steam cracking furnaces using GR12.11 detailed reaction mechanism—a CFD investigation [J]. Computers & Chemical Engineering, 2013, 58(45): 68-83. |
10 | Reyniers P A, Schietekat C M, van Cauwenberge D J, et al. Necessity and feasibility of 3D simulations of steam cracking reactors [J]. Industrial & Engineering Chemistry Research, 2015, 54: 12270-12282. |
11 | Hewson J C, Bollig M. Reduced mechanisms for NOx emissions from hydrocarbon diffusion flames [J]. Symposium (International) on Combustion, 1996, 2: 2171-2179. |
12 | Stefanidis G D, Heynderickx G J, Marin G B. Development of reduced combustion mechanisms for premixed flame modeling in steam cracking furnaces with emphasis on NO emission [J]. Energy & Fuels, 2006, 20 (1): 103-113. |
13 | Tang Q, Denison M, Adams B, et al. Towards comprehensive computational fluid dynamics modeling of pyrolysis furnaces with next generation low-NOx burners using finite-rate chemistry [J]. Proceedings of the Combustion Institute, 2009, 32: 2649- 2657. |
14 | 郑清平, 张惠明, 邓玉龙. 压燃式天然气发动机燃烧过程CFD模拟计算中的若干问题 [J]. 燃烧科学与技术, 2006, 12(4): 345-352. |
Zheng Q P, Zhang H M, Deng Y L. Some problems occurred in numerical simulation of combustion process in a compressed ignition natural gas engine [J]. Journal of Combustion Science and Technology, 2006, 12(4): 345-352. | |
15 | 倪城振, 杜文莉, 胡贵华. 乙烯裂解炉耦合模拟中湍流模型中的影响分析[J].化工学报, 2019, 70(2): 450-459. |
Ni C Z, Du W L, Hu G H. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459. | |
16 | Hu G H, Schietekat C M, Zhang Y, et al. Impact of radiation models in coupled simulations of steam cracking furnaces and reactors [J]. Industrial & Engineering Chemistry Research, 2015, 54(9): 2453- 2465 |
17 | Denison M K, Webb B W. Spectral line-based weighted-sum-of-gray-gases model for arbitrary RTE solvers [J]. Journal of Heat Transfer, Transactions ASME, 1993, 115(4): 1004-1012. |
18 | Magnussen B F, Hjertager B H. On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion [C]//16th International Combustion Symposium, The Combustion Institute, Pittsburgh, 1976: 719-729. |
19 | Magnussen B F. On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow [C]//19th Aerospace Science Meeting, American Institute of Aeronautics and Astronautics, St. Louis, Missouri, USA, 1981. |
20 | Gran I R, Magnussen B F. A numerical study of a bluff-body stabilized diffusion flame(2): Influence of combustion modeling and finite-rate chemistry [J]. Combustion Science and Technology, 1996, 119(1): 191-217. |
21 | Chen Q. Comparison of different k-ε models for indoor air flow computations [J]. Numerical Heat Transfer, Part B., 1995, 28: 353-369. |
22 | 黄山. 新型燃气快速热水器燃烧过程的数值模拟和实验研究[D]. 重庆: 重庆大学, 2006. |
Huang S. Numerical simulation and experimental studies on combustion process of the novel gas instantaneous water heater [D]. Chongqing: Chongqing University, 2006. | |
23 | Barlow R, Frank J. Piloted CH4/air flames C, D, E and F - release2.1[EB/OL]. [2007-07-15]. http: //. |
24 | Fluent, ANSYS. Gambit 2.3 user’s guide [Z]. ANSYS Inc.Lebanon, NH, USA, 2006. |
25 | Fluent, ANSYS. ANSYS FLUENT user’s guide, release 14.0 [Z]. ANSYS Inc.Canonsburg, PA, USA, 2011. |
26 | Sandia/TUD piloted CH4/air jet flames [EB/OL]. [2003-01]. http: //. |
27 | 张建, 李金科. 裂解炉NOx抑制技术[J]. 乙烯工业, 2013, 25(4): 40-43. |
Zhang J, Li J K. NOx suppression technology for cracking furnace [J]. Ethylene Industry, 2013, 25(4): 40-43. | |
28 | 张昆. 大庆乙烯裂解炉热效率分析与优化[J]. 江西化工, 2015, 2(2): 17-20. |
Zhang K. The analysis and optimization of Daqing ethylene cracking furnace thermal efficiency [J]. Jiangxi Chemical Industry, 2015, 2(2): 17-20. | |
29 | 王鹏. 多燃料燃气锅炉燃烧调整与运行优化[D]. 长沙: 长沙理工大学, 2015. |
Wang P. More fuel gas boiler combustion adjustment and operation optimization [D]. Changsha: Changsha University of Science & Technology, 2015. | |
30 | Kee R J, Rupley F M, Miller J A, et al. CHEMKIN Release 4.0[Z]. Reaction Design Inc.San Diego, CA, 2004. |
31 | Habibi A, Merci B, Heynderickx G J. Impact of radiation models in CFD simulations of steam cracking furnaces[J]. Comput. Chem. Eng., 2007, 31: 1389-1406. |
32 | 申东发, 王国清, 刘俊杰, 等. 利用详细燃烧模型对裂解炉二维模型富氧燃烧过程进行数值模拟[J]. 石油化工, 2016, 45(6): 656-663. |
Shen D F, Wang G Q, Liu J J, et al. 2D numerical simulation of oxygen-enriched combustion process in cracking furnace using detailed combustion model [J].Petrochemical Technology, 2016, 45(6): 656-663. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[5] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[6] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[7] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[8] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[9] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[10] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[11] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[12] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[13] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[14] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[15] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||