化工学报 ›› 2020, Vol. 71 ›› Issue (2): 688-697.DOI: 10.11949/0438-1157.20190359
收稿日期:2019-04-08
修回日期:2019-06-19
出版日期:2020-02-05
发布日期:2020-02-05
通讯作者:
杜文莉
作者简介:谢雨珩(1994—),男,硕士研究生,基金资助:
Yuheng XIE(
),Zhi LI,Minglei YANG,Wenli DU(
)
Received:2019-04-08
Revised:2019-06-19
Online:2020-02-05
Published:2020-02-05
Contact:
Wenli DU
摘要:
异构化是芳烃生产中的重要环节,提高异构化环节的建模和优化效率对工业生产有着重要意义。但是,直接使用机理模型的优化过程耗时较长,优化效率低。代理模型可以有效地对机理模型进行近似,而代理模型采样方法对模型精度有很大影响。提出了一种新的基于稀疏度和最邻近期望的自适应采样算法,该方法可以平衡全局搜索和局部搜索,通过求解优化问题找到反映函数关键信息的新采样点,再加入原始样本集中,使得代理模型精度不断提高。多个测试函数结果表明,相比于其他自适应采样算法,该算法能有效提升代理模型精度和建模效率。该算法在芳烃异构化环节代理模型中也得到了有效验证,与本文中其他算法对比,该算法模型误差减少5%以上,建模时间缩短30%以上。
中图分类号:
谢雨珩, 李智, 杨明磊, 杜文莉. 基于自适应采样算法的芳烃异构化代理模型[J]. 化工学报, 2020, 71(2): 688-697.
Yuheng XIE, Zhi LI, Minglei YANG, Wenli DU. Surrogate model of aromatic isomerization process based on adaptive sampling algorithm[J]. CIESC Journal, 2020, 71(2): 688-697.
| 采样方法 | 采样点/个 | RMSE | 时间/s |
|---|---|---|---|
| 自适应采样 | 20+80 | 0.078739 | 8.79 |
| 拉丁超立方采样 | 100 | 0.628361 | 0.196203 |
表1 PK函数自适应采样与拉丁超立方采样结果对比
Table 1 Comparison of PK function adaptive sampling and Latin hypercube sampling results
| 采样方法 | 采样点/个 | RMSE | 时间/s |
|---|---|---|---|
| 自适应采样 | 20+80 | 0.078739 | 8.79 |
| 拉丁超立方采样 | 100 | 0.628361 | 0.196203 |
| 测试函数 | 维数 | 初始采样点 | 新增采样点 |
|---|---|---|---|
| PK | 2 | 20 | 80 |
| AlpineN.1 | 2 | 20 | 80 |
| AlpineN.2 | 2 | 20 | 80 |
| Hartman3 | 3 | 30 | 120 |
| Shekel5 | 4 | 40 | 160 |
| Shekel7 | 4 | 40 | 160 |
| Hartman6 | 6 | 60 | 240 |
| Ackley | 8 | 80 | 320 |
表2 采样方式
Table 2 Sampling configurations
| 测试函数 | 维数 | 初始采样点 | 新增采样点 |
|---|---|---|---|
| PK | 2 | 20 | 80 |
| AlpineN.1 | 2 | 20 | 80 |
| AlpineN.2 | 2 | 20 | 80 |
| Hartman3 | 3 | 30 | 120 |
| Shekel5 | 4 | 40 | 160 |
| Shekel7 | 4 | 40 | 160 |
| Hartman6 | 6 | 60 | 240 |
| Ackley | 8 | 80 | 320 |
| 测试函数 | MASA | ASA-NNDM | SSA | ASSA-SNN |
|---|---|---|---|---|
| PK | 0.07506 | 0.11860 | 0.09055 | 0.06428 |
| AlpineN.1 | 1.96015 | 1.75482 | 1.21713 | 1.21350 |
| AlpineN.2 | 0.02524 | 0.09999 | 0.01950 | 0.04680 |
| Hartman3 | 0.01351 | 0.05956 | 0.01607 | 0.01510 |
| Shekel5 | 0.18186 | 0.13901 | 0.08644 | 0.07058 |
| Shekel7 | 0.25594 | 0.20254 | 0.09568 | 0.07924 |
| Hartman6 | 0.12602 | 0.21485 | 0.11549 | 0.10785 |
| Ackley | 0.39066 | 0.41528 | 0.40963 | 0.38582 |
表3 各测试函数的平均RMSE
Table 3 Average RMSE obtained by four sampling approaches for test cases
| 测试函数 | MASA | ASA-NNDM | SSA | ASSA-SNN |
|---|---|---|---|---|
| PK | 0.07506 | 0.11860 | 0.09055 | 0.06428 |
| AlpineN.1 | 1.96015 | 1.75482 | 1.21713 | 1.21350 |
| AlpineN.2 | 0.02524 | 0.09999 | 0.01950 | 0.04680 |
| Hartman3 | 0.01351 | 0.05956 | 0.01607 | 0.01510 |
| Shekel5 | 0.18186 | 0.13901 | 0.08644 | 0.07058 |
| Shekel7 | 0.25594 | 0.20254 | 0.09568 | 0.07924 |
| Hartman6 | 0.12602 | 0.21485 | 0.11549 | 0.10785 |
| Ackley | 0.39066 | 0.41528 | 0.40963 | 0.38582 |
| 测试函数 | MASA | ASA-NNDM | SSA | ASSA-SNN |
|---|---|---|---|---|
| PK | 15.87 | 125.68 | 32.40 | 8.87 |
| AlpineN.1 | 16.41 | 124.21 | 32.71 | 8.54 |
| AlpineN.2 | 15.90 | 119.78 | 28.62 | 8.57 |
| Hartman3 | 55.14 | 219.46 | 162.34 | 23.12 |
| Shekel5 | 148.17 | 369.43 | 669.46 | 52.17 |
| Shekel7 | 150.60 | 372.50 | 652.90 | 53.17 |
| Hartman6 | 650.93 | 1127.57 | 6142.58 | 189.25 |
| Ackley | 2078.48 | 3028.23 | 28864.74 | 490.20 |
表4 各测试函数的平均计算时间/s
Table 4 Average running time obtained by four sampling approaches for test cases/s
| 测试函数 | MASA | ASA-NNDM | SSA | ASSA-SNN |
|---|---|---|---|---|
| PK | 15.87 | 125.68 | 32.40 | 8.87 |
| AlpineN.1 | 16.41 | 124.21 | 32.71 | 8.54 |
| AlpineN.2 | 15.90 | 119.78 | 28.62 | 8.57 |
| Hartman3 | 55.14 | 219.46 | 162.34 | 23.12 |
| Shekel5 | 148.17 | 369.43 | 669.46 | 52.17 |
| Shekel7 | 150.60 | 372.50 | 652.90 | 53.17 |
| Hartman6 | 650.93 | 1127.57 | 6142.58 | 189.25 |
| Ackley | 2078.48 | 3028.23 | 28864.74 | 490.20 |
| 质量指标 | MASA | ASA-NNDM | SSA | ASSA-SNN |
|---|---|---|---|---|
| 轻烃收率 | 0.001261 | 0.001115 | 0.001147 | 0.001053 |
| C8+收率 | 0.001216 | 0.001123 | 0.001061 | 0.000986 |
表5 芳烃异构化重要指标的RMSE
Table 5 RMSE of important indicators for isomerization of aromatics
| 质量指标 | MASA | ASA-NNDM | SSA | ASSA-SNN |
|---|---|---|---|---|
| 轻烃收率 | 0.001261 | 0.001115 | 0.001147 | 0.001053 |
| C8+收率 | 0.001216 | 0.001123 | 0.001061 | 0.000986 |
| 质量指标 | MASA | ASA-NNDM | SSA | ASSA-SNN |
|---|---|---|---|---|
| 轻烃收率 | 3313.04 | 4600.36 | 20404.30 | 2189.42 |
| C8+收率 | 3313.02 | 4574.49 | 20429.36 | 2122.41 |
表6 芳烃异构化重要指标的建模时间/s
Table 6 Modeling time for important indicators of aromatic isomerization/s
| 质量指标 | MASA | ASA-NNDM | SSA | ASSA-SNN |
|---|---|---|---|---|
| 轻烃收率 | 3313.04 | 4600.36 | 20404.30 | 2189.42 |
| C8+收率 | 3313.02 | 4574.49 | 20429.36 | 2122.41 |
| 1 | 徐欧官, 傅永峰, 陈祥华. 工业异构化反应器建模及仿真[J]. 化工学报, 2011, 62(8): 2298-2302. |
| Xu O G, Fu Y F, Chen X H. Modeling and simulation for an industrial reactor on hydroisomerization of C8-aromatics[J]. CIESC Journal, 2011, 62(8): 2298-2302. | |
| 2 | Lim D, Jin Y, Ong Y S, et al. Generalizing surrogate-assisted evolutionary computation[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(3): 329-355. |
| 3 | Jin Y. A comprehensive survey of fitness approximation in evolutionary computation[J]. Soft Computing, 2005, 9(1): 3-12. |
| 4 | Box G E P, Wilson K B. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society, 1951, 13(1): 1-45. |
| 5 | Lian Y S, Liou M S. Multiobjective optimization using coupled response surface model and evolutionary algorithm[J]. AIAA Journal, 2005, 43(6): 1316-1325. |
| 6 | Mullur A, Messac A. Extended radial basis functions: more flexible and effective metamodeling[J]. AIAA Journal, 2005, 43(6): 1306-1315. |
| 7 | Fang H B, Horstemeyer M F. Global response approximation with radial basis functions[J]. Engineering Optimization, 2006, 38(4): 407-424. |
| 8 | Krige D G. A statistical approach to some basic mine valuation problems on the witwatersrand[J]. Journal of the Chemical, Metallurgical and Mining Engineering Society of South Africa, 1951, 52(6): 119-139. |
| 9 | Cressie N. Spatial prediction and ordinary kriging[J]. Mathematical Geology, 1989, 21(4): 493-494. |
| 10 | Vapnik V, Golowich S E, Smola A. Support vector method for function approximation, estimation regression, and signal processing[C]// Advances in Neural Information Processing Systems 9, 1997, 9: 281-287. |
| 11 | Friedman J H, Roosen C B. An introduction to multivariate adaptive regression splines[J]. Statistical Methods in Medical Research, 1995, 4(3): 197-217. |
| 12 | Friedman J H. Multivariate adaptive regression spline[J]. The Annals of Statistics, 1991, 19(1): 1-67. |
| 13 | Basheer I, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application[J]. Journal of Microbiological Methods, 2000, 43(1): 3-31. |
| 14 | Jin Y, Li J, Du W, et al. Adaptive sampling for surrogate modelling with artificial neural network and its application in an industrial cracking furnace[J]. The Canadian Journal of Chemical Engineering, 2016, 94(2): 262-272. |
| 15 | Zhou B D, Yao H L, Shi M H, et al. An new immune genetic algorithm based on uniform design sampling[J]. Knowledge and Information Systems, 2012, 31(2): 389-403. |
| 16 | Ye K Q. Orthogonal column Latin hypercubes and their application in computer experiments[J]. Publications of the American Statistical Association, 1998, 93(444): 1430-1439. |
| 17 | Wang G. Adaptive response surface method using inherited Latin hypercube design points[J]. Journal of Mechanical Design, 2003, 125(2): 210-220. |
| 18 | Jin Y. A framework for evolutionary optimization with approximate fitness functions[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(5): 481-494. |
| 19 | Wang H, Jin Y, Doherty J. Committee-based active learning for surrogate-assisted particle swarm optimization of expensive problems[J]. IEEE Trans. Cybern., 2017, 47(9): 2664-2677. |
| 20 | Eason J, Cremaschi S. Adaptive sequential sampling for surrogate model generation with artificial neural networks[J]. Computers & Chemical Engineering, 2014, 68: 220-232. |
| 21 | Wei X, Wu Y Z, Chen L P. A new sequential optimal sampling method for radial basis functions[J]. Applied Mathematics and Computation, 2012, 218(19): 9635-9646. |
| 22 | Garud S S, Karimi I A, Kraft M. Smart sampling algorithm for surrogate model development[J]. Computers & Chemical Engineering, 2017, 96: 103-114. |
| 23 | Müller J, Shoemaker C A. Influence of ensemble surrogate models and sampling strategy on the solution quality of algorithms for computationally expensive black-box global optimization problems[J]. Journal of Global Optimization, 2014, 60(2): 123-144. |
| 24 | Sacks J, Welch W J, Toby J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4): 409-423. |
| 25 | 王晓强, 罗娜, 叶贞成, 等. 基于Kriging的差分进化算法及其在苯乙烯流程优化中的应用[J]. 化工学报, 2013, 64(12): 4563-4570. |
| Wang X Q, Luo N, Ye Z C, et al. Differential evolution algorithm based on Kriging and its application in styrene plant optimization[J]. CIESC Journal, 2013, 64(12): 4563-4570. | |
| 26 | 段星辰, 杜文莉. 基于bootstrap GEI算法的碳二加氢反应器代理模型[J]. 化工学报, 2015, 66(12): 4904-4909. |
| Duan X C, Du W L. Surrogate model of acetylene hydrogenation reactor based on bootstrap GEI algorithm[J]. CIESC Journal, 2015, 66(12): 4904-4909. | |
| 27 | Xiao N C, Zuo M J, Guo W. Efficient reliability analysis based on adaptive sequential sampling design and cross-validation[J]. Applied Mathematical Modelling, 2018, 58: 404-420. |
| 28 | Gong W, Duan Q. An Adaptive Surrogate modeling-based sampling strategy for parameter optimization and distribution estimation (ASMO-PODE)[J]. Environmental Modelling & Software, 2017, 95: 61-75. |
| 29 | 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225. |
| Han Z H. Kriging surrogate model and its application to design optimization: a review of recent progress [J]. Acta Aeronautica Et Astronautica Sinica, 2016, 37(11): 3197-3225. | |
| 30 | Jin Y. Surrogate-assisted evolutionary computation: recent advances and future challenges[J]. Swarm & Evolutionary Computation, 2011, 1(2): 61-70. |
| 31 | Hooke R, Jeeves T A. “Direct search” solution of numerical and statistical problems[J]. Journal of the ACM, 1961, 8(2): 212-229. |
| 32 |
张剑超, 杜文莉, 覃水. 基于新型自适应采样算法的催化重整过程代理模型[J]. 华东理工大学学报(自然科学版), 2018, doi: 10.14135/j.cnki.1006-3080.20180915001.
DOI URL |
|
Zhang J C, Du W L, Qin S. Surrogate model of catalytic reforming process based on a new adaptive sampling algorithm[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2018, doi: 10.14135/j.cnki.1006-3080.20180915001.
DOI URL |
|
| 33 | 刘祥荣. 二甲苯异构化反应器的模拟研究[D]. 北京: 北京化工大学, 2010. |
| Liu X R. The modeling and dynamic simulation of the xylene isomerization reactor[D]. Beijing: Beijing University of Chemical Technology, 2010. |
| [1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
| [2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
| [3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及 分析[J]. 化工学报, 2023, 74(S1): 53-63. |
| [4] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
| [5] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
| [6] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
| [7] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
| [8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
| [9] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
| [10] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
| [11] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
| [12] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
| [13] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
| [14] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
| [15] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号