化工学报 ›› 2020, Vol. 71 ›› Issue (1): 106-121.DOI: 10.11949/0438-1157.20191071
收稿日期:
2019-09-23
修回日期:
2019-10-08
出版日期:
2020-01-05
发布日期:
2020-01-05
通讯作者:
陈钰,牟天成
作者简介:
陈钰(1988—),男,博士,讲师,基金资助:
Received:
2019-09-23
Revised:
2019-10-08
Online:
2020-01-05
Published:
2020-01-05
Contact:
Yu CHEN,Tiancheng MU
摘要:
绿色且高效的电池和电催化反应是可持续发展的基本要求,其关键因素之一在于选择能提高效率的绿色电解质和合成高效电极材料的绿色溶剂。低共熔溶剂(DESs)是一种新型环境友好的电解质和溶剂。与传统的溶剂和电解质(如离子液体、水、超临界二氧化碳)相比,DESs具有合成简便、价格低廉、可设计等优点,在电池和电催化领域有着广阔的应用前景。这方面的研究还处于起步阶段,未见有综述系统介绍。本综述内容包括以下几个部分。(1)DESs作为电池和电催化反应的电解质,其中电池包括太阳能电池、锂离子电池、钠电池、锌电池、铝电池、液流电池、超级电容器,电催化反应包括析氧反应、析氢反应、氧还原反应、全解水反应、氮气电催化反应、二氧化碳电还原反应;(2)DESs作为制备电池和电催化反应电极材料的溶剂;(3)DESs作为回收电极材料的溶剂;(4)结论和展望。
中图分类号:
陈钰, 牟天成. 低共熔溶剂在电池和电催化中的应用[J]. 化工学报, 2020, 71(1): 106-121.
Yu CHEN, Tiancheng MU. Application of deep eutectic solvents in battery and electrocatalysis[J]. CIESC Journal, 2020, 71(1): 106-121.
1 | Bai S , Da P , Li C , et al . Planar perovskite solar cells with long-term stability using ionic liquid additives[J]. Nature, 2019, 571: 245-250. |
2 | Liu M Z , Johnston M B , Snaith H J . Efficient planar heterojunction perovskite solar cells by vapour deposition [J]. Nature, 2013, 501: 395-399. |
3 | Basile A , Bhatt A I , O'Mullane A P . Stabilizing lithium metal using ionic liquids for long-lived batteries [J]. Nat. Commun., 2016, 7: 11794-11805. |
4 | Lu Y , Ma Y , Zhang T , et al . Monolithic 3D cross-linked polymeric graphene materials and the likes: preparation and their redox catalytic applications [J]. J. Am. Chem. Soc., 2018, 140: 11538-11550. |
5 | Wei L , Dong X , Ma M , et al . Co3O4 hollow fiber: an efficient catalyst precursor for hydrolysis of sodium borohydride to generate hydrogen [J]. International Journal of Hydrogen Energy, 2018, 43: 1529-1533. |
6 | Lu Y , Ma B , Yang Y , et al . High activity of hot electrons from bulk 3D graphene materials for efficient photocatalytic hydrogen production [J]. Nano Research, 2017, 10: 1662-1672. |
7 | He M Y , Sun Y H , Han B X . Green carbon science: scientific basis for integrating carbon resource processing, utilization, and recycling [J]. Angew. Chem. Int. Ed., 2013, 52: 9620-9633. |
8 | Cui G K , Wang J J , Zhang S J . Active chemisorption sites in functionalized ionic liquids for carbon capture [J]. Chem. Soc. Rev., 2016, 45: 4307-4339. |
9 | Liu R , Zhang P , Zhang S , et al . Ionic liquids and supercritical carbon dioxide: green and alternative reaction media for chemical processes [J]. Rev. Chem. Eng., 2016, 32: 587-609. |
10 | Zhu Q , Ma J , Kang X , et al . Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture [J]. Angew. Chem. Int. Ed., 2016, 55: 9012-9016. |
11 | Ma Z , Forsyth M , MacFarlane D R , et al . Ionic liquid/tetraglyme hybrid Mg[TFSI]2 electrolytes for rechargeable Mg batteries [J]. Green Energy Environ., 2018, 4: 146-153. |
12 | Wu F , Zhu N , Bai Y , et al . An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances [J]. Green Energy Environ., 2018, 3: 71-77. |
13 | Chen Y , Cao Y Y , Shi Y , et al . Quantitative research on the vaporization and decomposition of [EMIM][Tf2N] by thermogravimetric analysis-mass spectrometry [J]. Ind. Eng. Chem. Res., 2012, 51: 7418-7427. |
14 | Xue Z , Qin L , Jiang J , et al . Thermal, electrochemical and radiolytic stabilities of ionic liquids [J]. Phys. Chem. Chem. Phys., 2018, 20: 8382-8402. |
15 | Wang B , Qin L , Mu T , et al . Are ionic liquids chemically stable? [J]. Chem. Rev., 2017, 117: 7113-7131. |
16 | Chen Y , Cao Y Y , Lu X Y , et al . Water sorption in protic ionic liquids: correlation between hygroscopicity and polarity [J]. New J. Chem., 2013, 37: 1959-1967. |
17 | Paiva A , Craveiro R , Aroso I , et al . Natural deep eutectic solvents- solvents for the 21st century [J]. ACS Sustainable Chem. Eng., 2014, 2: 1063-1071. |
18 | Araujo C F , Coutinho J A P , Nolasco M M , et al . Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents [J]. Phys. Chem. Chem. Phys., 2017, 19: 17998-18009. |
19 | Stefanovic R , Ludwig M , Webber G B , et al . Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor [J]. Phys. Chem. Chem. Phys., 2017, 19: 3297-3306. |
20 | Yu D , Mu T . Strategy to form eutectic molecular liquids based on noncovalent interactions [J]. J. Phys. Chem. B, 2019, 123: 4958-4966. |
21 | Zhong F Y , Peng H L , Tao D J , et al . Phenol-based ternary deep eutectic solvents for highly efficient and reversible absorption of NH3 [J]. ACS Sustainable Chem. Eng., 2019, 7: 3258-3266. |
22 | Jiang W , Zhong F , Liu Y , et al . Effective and reversible capture of NH3 by ethylamine hydrochloride plus glycerol deep eutectic solvents [J]. ACS Sustainable Chem. Eng., 2019, 7: 10552-10560. |
23 | Yao C F , Hou Y C , Ren S H , et al . Sulfonate based zwitterions: a new class of extractants for separating phenols from oils with high efficiency via forming deep eutectic solvents [J]. Fuel Process. Technol., 2018, 178: 206-212. |
24 | Ji Y , Hou Y , Ren S , et al . Highly efficient extraction of phenolic compounds from oil mixtures by trimethylamine-based dicationic ionic liquids via forming deep eutectic solvents [J]. Fuel Process. Technol., 2018, 171: 183-191. |
25 | Liu F , Xue Z , Zhao X , et al . Catalytic deep eutectic solvents for highly efficient conversion of cellulose to gluconic acid with gluconic acid self-precipitation separation [J]. Chem. Commun., 2018, 54: 6140-6143. |
26 | Chen Y , Mu T . Application of deep eutectic solvents in biomass pretreatment and conversion [J]. Green Energy Environ., 2019, 4: 95-115. |
27 | Wang J , Wang P , Wang Q , et al . Low temperature electrochemical deposition of aluminum in organic bases/thiourea-based deep eutectic solvents [J]. ACS Sustainable Chem. Eng., 2018, 6: 15480-15486. |
28 | Abbott A P , Boothby D , Capper G , et al . Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids [J]. J. Am. Chem. Soc., 2004, 126: 9142-9147. |
29 | Cruz H , Jordao N , Amorim P , et al . Deep eutectic solvents as suitable electrolytes for electrochromic devices [J]. ACS Sustainable Chem. Eng., 2018, 6: 2240-2249. |
30 | Mori R . All solid state rechargeable aluminum-air battery with deep eutectic solvent based electrolyte and suppression of byproducts formation [J]. RSC Adv., 2019, 9: 22220-22226. |
31 | Li K , Ren T Z , Yuan Z Y , et al . Electrodeposited P-Co nanoparticles in deep eutectic solvents and their performance in water splitting [J]. International Journal of Hydrogen Energy, 2018, 43: 10448-10457. |
32 | Nguyen P T , Nguyen T-D T , Vinh N , et al . Application of deep eutectic solvent from phenol and choline chloride in electrolyte to improve stability performance in dye-sensitized solar cells [J]. J. Mol. Liq., 2019, 277: 157-162. |
33 | Tran M K , Rodrigues M T F , Kato K , et al . Deep eutectic solvents for cathode recycling of Li-ion batteries [J]. Nature Energy, 2019, 4: 339-345. |
34 | Wagle D V , Zhao H , Baker G A . Deep eutectic solvents: sustainable media for nanoscale and functional materials [J]. Acc. Chem. Res., 2014, 47: 2299-2308. |
35 | Chakrabarti M H , Mjalli F S , AlNashef I M , et al . Prospects of applying ionic liquids and deep eutectic solvents for renewable energy storage by means of redox flow batteries [J]. Renewable & Sustainable Energy Reviews, 2014, 30: 254-270. |
36 | Cao Z , Yang S , Wang M , et al . Cu(In,Ga)S2 absorber layer prepared for thin film solar cell by electrodeposition of Cu-Ga precursor from deep eutectic solvent [J]. Solar Energy, 2016, 139: 29-35. |
37 | Dhingra D , Bhawna B , Pandey S K . Effect of lithium chloride on the density and dynamic viscosity of choline chloride/urea deep eutectic solvent in the temperature range (303.15—358.15) K [J]. J. Chem. Thermodyn., 2019, 130: 166-172. |
38 | Dhingra D , Bhawna B , Pandey A , et al . Pyrene fluorescence to probe a lithium chloride-added (choline chloride plus urea) deep eutectic solvent [J]. J. Phys. Chem. B, 2019, 123: 3103-3111. |
39 | Millia L , Dall'Asta V , Ferrara C , et al . Bio-inspired choline chloride-based deep eutectic solvents as electrolytes for lithium-ion batteries [J]. Solid State Ionics, 2018, 323: 44-48. |
40 | Tripathy S N , Wojnarowska Z , Knapik J , et al . Glass transition dynamics and conductivity scaling in ionic deep eutectic solvents: the case of (acetamide plus lithium nitrate/sodium thiocyanate) melts [J]. J. Chem. Phys., 2015, 142(18): 184504. |
41 | Boisset A , Menne S , Jacquemin J , et al . Deep eutectic solvents based on N-methylacetamide and a lithium salt as suitable electrolytes for lithium-ion batteries [J]. Phys. Chem. Chem. Phys., 2013, 15: 20054-20063. |
42 | Boisset A , Jacquemin J , Anouti M . Physical properties of a new deep eutectic solvent based on lithium bis (trifluoromethyl)sulfonyl imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors [J]. Electrochim. Acta, 2013, 102: 120-126. |
43 | Sim L N , Yahya R , Arof A K . Infrared studies of polyacrylonitrile-based polymer electrolytes incorporated with lithium bis(trifluoromethane) sulfonimide and urea as deep eutectic solvent [J]. Opt. Mater., 2016, 56: 140-144. |
44 | Zaidi W , Boisset A , Jacquemin J , et al . Deep eutectic solvents based on N-methylacetamide and a lithium salt as electrolytes at elevated temperature for activated carbon-based supercapacitors [J]. J. Phys. Chem. C, 2014, 118: 4033-4042. |
45 | Biswas R , Das A , Shirota H . Low-frequency collective dynamics in deep eutectic solvents of acetamide and electrolytes: a femtosecond Raman-induced Kerr effect spectroscopic study [J]. J. Chem. Phys., 2014, 141(13):134506. |
46 | Mukherjee K , Das A , Choudhury S , et al . Dielectric relaxations of (acetamide plus electrolyte) deep eutectic solvents in the frequency window, 0.2 ≤ v/GHz ≤ 50: anion and cation dependence [J]. J. Phys. Chem. B, 2015, 119: 8063-8071. |
47 | Ueno K , Tokuda H , Watanabe M . Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties [J]. Phys. Chem. Chem. Phys., 2010, 12: 1649-1658. |
48 | Pires J , Timperman L , Jacquemin J , et al . Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based protic ionic liquid + propylene carbonate) binary mixture [J]. J. Chem. Thermodyn., 2013, 59: 10-19. |
49 | Bogolowski N , Drillet J F . Activity of different AlCl3-based electrolytes for the electrically rechargeable aluminium-air battery [J]. Electrochim. Acta, 2018, 274: 353-358. |
50 | Angell M , Pan C J , Rong Y , et al . High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte [J]. P. Natl. Acad. Sci. USA, 2017, 114: 834-839. |
51 | Kao-ian W , Pornprasertsuk R , Thamyongkit P , et al . Rechargeable zinc-ion battery based on choline chloride-urea deep eutectic solvent [J]. J. Electrochem. Soc., 2019, 166: A1063-A1069. |
52 | Zhao J , Zhang J , Yang W , et al . “Water-in-deep eutectic solvent” electrolytes enable zinc metal anodes for rechargeable aqueous batteries [J]. Nano Energy, 2019, 57: 625-634. |
53 | Boldrini C L , Manfredi N , Perna F M , et al . Dye-sensitized solar cells that use an aqueous choline chloride-based deep eutectic solvent as effective electrolyte solution [J]. Energy Technol., 2017, 5: 345-353. |
54 | Jhong H R , Wong D S H , Wan C C , et al . A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells [J]. Electrochem. Commun., 2009, 11: 209-211. |
55 | Xu Q , Qin L Y , Ji Y N , et al . A deep eutectic solvent (DES) electrolyte-based vanadium-iron redox flow battery enabling higher specific capacity and improved thermal stability [J]. Electrochim. Acta, 2019, 293: 426-431. |
56 | Xu Q , Ji Y N , Qin L Y , et al . Effect of carbon dioxide additive on the characteristics of a deep eutectic solvent (DES) electrolyte for non-aqueous redox flow batteries [J]. Chem. Phys. Lett., 2018, 708: 48-53. |
57 | Shukla S K , Mikkola J P . Unusual temperature-promoted carbon dioxide capture in deep-eutectic solvents: the synergistic interactions [J]. Chem. Commun., 2019, 55: 3939-3942. |
58 | Yang D , Zhang S , Jiang D E , et al . SO2 absorption in EmimCl-TEG deep eutectic solvents [J]. Phys. Chem. Chem. Phys., 2018, 20: 15168-15173. |
59 | Kang X C , Sun X F , Zhu Q G , et al . Synthesis of hierarchical mesoporous Prussian blue analogues in ionic liquid/water/MgCl2 and application in electrochemical reduction of CO2 [J]. Green Chem., 2016, 18: 1869-1873. |
60 | Sun Z , Ma T , Tao H , et al . Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials [J]. Chem., 2017, 3: 560-587. |
61 | Kang X , Zhu Q , Sun X , et al . Highly efficient electrochemical reduction of CO2 to CH4 in an ionic liquid using a metal-organic framework cathode [J]. Chem. Sci., 2016, 7: 266-273. |
62 | Wu H , Song J , Xie C , et al . Highly efficient electrochemical reduction of CO2 into formic acid over lead dioxide in an ionic liquid-catholyte mixture [J]. Green Chem., 2018, 20: 1765-1769. |
63 | Zhang L , Zhang C , Ding Y , et al . A low-cost and high-energy hybrid iron-aluminum liquid battery achieved by deep eutectic solvents [J]. Joule, 2017, 1: 623-633. |
64 | Lloyd D , Vainikka T , Kontturi K . The development of an all copper hybrid redox flow battery using deep eutectic solvents [J]. Electrochim. Acta, 2013, 100: 18-23. |
65 | Sathyamoorthi S , Phattharasupakun N , Sawangphruk M . Environmentally benign non-fluoro deep eutectic solvent and free-standing rice husk-derived bio-carbon based high-temperature supercapacitors [J]. Electrochim. Acta, 2018, 286: 148-157. |
66 | Deng M J , Chou T H , Yeh L H , et al . 4.2 V wearable asymmetric supercapacitor devices based on a VO x //MnOx paper electrode and an eco-friendly deep eutectic solvent-based gel electrolyte [J]. J. Mater. Chem. A, 2018, 6: 20686-20694. |
67 | Qin H , Panzer M J . Chemically cross-linked poly(2-hydroxyethyl methacrylate)-supported deep eutectic solvent gel electrolytes for eco-friendly supercapacitors [J]. Chemelectrochem, 2017, 4: 2556-2562. |
68 | Phadke S , Amara S , Anouti M . Gas evolution in activated-carbon-based supercapacitors with protic deep eutectic solvent as electrolyte [J]. ChemPhysChem, 2017, 18: 2364-2373. |
69 | Zaidi W , Timperman L , Anouti M . Deep eutectic solvent based on sodium cations as an electrolyte for supercapacitor application [J]. RSC Adv., 2014, 4: 45647-45652. |
70 | Vasilyev D V , Rudnev A V , Broekmann P , et al . A general and facile approach for the electrochemical reduction of carbon dioxide inspired by deep eutectic solvents [J]. ChemSusChem, 2019, 12: 1635-1639. |
71 | Wu Z , Huang R R , Yu H , et al . Deep eutectic solvent synthesis of LiMnPO₄/C nanorods as a cathode material for lithium ion batteries [J]. Materials, 2017, 10: 1-16. |
72 | Gu C D , Mai Y J , Zhou J P , et al . SnO2 nanocrystallite: novel synthetic route from deep eutectic solvent and lithium storage performance [J]. Funct. Mater. Lett., 2011, 4: 377-381. |
73 | Wang C , Yang Y , Chen Z , et al . A mild process for the synthesis of Na2Ti3O7 as an anode material for sodium-ion batteries in deep eutectic solvent [J]. J. Mater. Sci.-Mater. El., 2019, 30: 8422-8427. |
74 | Zhang Y , Han J , Liao C . Insights into the properties of deep eutectic solvent based on reline for Ga-controllable CIGS solar cell in one-step electrodeposition [J]. J. Electrochem. Soc., 2016, 163: D689-D693. |
75 | Malaquias J C , Steichen M , Dale P J . One-step electrodeposition of metal precursors from a deep eutectic solvent for Cu(In, Ga)Se2 thin film solar cells [J]. Electrochim. Acta, 2015, 151: 150-156. |
76 | Malaquias J C , Regesch D , Dale P J , et al . Tuning the gallium content of metal precursors for Cu(In, Ga)Se2 thin film solar cells by electrodeposition from a deep eutectic solvent [J]. Phys. Chem. Chem. Phys., 2014, 16: 2561-2567. |
77 | Niu G , Yang S , Li H , et al . Electrodeposition of Cu-Ga precursor layer from deep eutectic solvent for CuGaS2 solar energy thin film [J]. J. Electrochem. Soc., 2014, 161: 333-338. |
78 | Steichen M , Thomassey M , Siebentritt S , et al . Controlled electrodeposition of Cu-Ga from a deep eutectic solvent for low cost fabrication of CuGaSe2 thin film solar cells [J]. Phys. Chem. Chem. Phys., 2011, 13: 4292-4302. |
79 | Miller M A , Wainright J S , Savinell R F . Iron electrodeposition in a deep eutectic solvent for flow batteries [J]. J. Electrochem. Soc., 2017, 164: A796-A803. |
80 | Tan X X , Zhao W C , Mu T C . Controllable exfoliation of natural silk fibers into nanofibrils by protein denaturant deep eutectic solvent: nanofibrous strategy for multifunctional membranes [J]. Green Chem., 2018, 20: 3625-3633. |
81 | Wadekar P H , Khose R V , Pethsangave D A , et al . One-pot synthesis of sulfur and nitrogen co-functionalized graphene material using deep eutectic solvents for supercapacitors [J]. ChemSusChem, 2019, 12(14): 3326-3335. |
82 | Thorat G M , Jadhav H S , Chung W J , et al . Collective use of deep eutectic solvent for one-pot synthesis of ternary Sn/SnO2@C electrode for supercapacitor [J]. Journal of Alloys and Compounds, 2018, 732: 694-704. |
83 | Carriazo D , Gutierrez M C , Pico F , et al . Phosphate-functionalized carbon monoliths from deep eutectic solvents and their use as monolithic electrodes in supercapacitors [J]. ChemSusChem, 2012, 5: 1405-1409. |
84 | Yin P , Yao T , Wu Y , et al . Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts [J]. Angew. Chem. Int. Ed., 2016, 55: 10800-10805. |
85 | Luo R , Liu C , Li J , et al . Deep-eutectic solvents derived nitrogen-doped graphitic carbon as a superior electrocatalyst for oxygen reduction [J]. ACS Appl. Mater. Inter., 2017, 9: 32737-32744. |
86 | Seitz L C , Dickens C F , Nishio K , et al . A highly active and stable IrO x /SrIrO3 catalyst for the oxygen evolution reaction [J]. Science, 2016, 353: 1011-1014. |
87 | Mou H , Wang J , Yu D , et al . A facile and controllable, deep eutectic solvent aided strategy for the synthesis of graphene encapsulated metal phosphides for enhanced electrocatalytic overall water splitting [J]. J. Mater. Chem. A, 2019, 7: 13455-13459. |
88 | Yang W Q , Hua Y X , Zhang Q B , et al . Electrochemical fabrication of 3D quasi-amorphous pompon-like Co-O and Co-Se hybrid films from choline chloride/urea deep eutectic solvent for efficient overall water splitting [J]. Electrochim. Acta, 2018, 273: 71-79. |
89 | Sun C , Zeng J , Lei H , et al . Direct electrodeposition of phosphorus-doped nickel superstructures from choline chloride-ethylene glycol deep eutectic solvent for enhanced hydrogen evolution catalysis [J]. ACS Sustainable Chem. Eng., 2019, 7: 1529-1537. |
90 | Lu Y , Geng S , Wang S , et al . Electrodeposition of Ni-Mo-Cu coatings from roasted nickel matte in deep eutectic solvent for hydrogen evolution reaction [J]. International Journal of Hydrogen Energy, 2019, 44: 5704-5716. |
91 | Wang S , Zou X , Lu Y , et al . Electrodeposition of nano-nickel in deep eutectic solvents for hydrogen evolution reaction in alkaline solution [J]. International Journal of Hydrogen Energy, 2018, 43: 15673-15686. |
92 | Vijayakumar J , Mohan S , Kumar S A , et al . Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution [J]. International Journal of Hydrogen Energy, 2013, 38: 10208-10214. |
93 | Verma A , Jaihindh D P , Fu Y P . Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping [J]. Dalton Trans., 2019, 48: 8594-8610. |
94 | Liu S , Zhang C , Zhang B , et al . All-in-one deep eutectic solvent toward cobalt-based electrocatalyst for oxygen evolution reaction [J]. ACS Sustainable Chem. Eng., 2019, 7: 8964-8971. |
95 | Jiang J , Chang L , Zhao W , et al . An advanced FeCoNi nitro-sulfide hierarchical structure from deep eutectic solvents for enhanced oxygen evolution reaction [J]. Chem. Commun., 2019, 55: 10174-10177. |
96 | Thorat G M , Jadhav H S , Roy A , et al . Dual role of deep eutectic solvent as a solvent and template for the synthesis of octahedral cobalt vanadate for an oxygen evolution reaction [J]. ACS Sustainable Chem. Eng., 2018, 6: 16255-16266. |
97 | Zhao X H , Jiang J Y , Xue Z M , et al . An ambient temperature, CO2-assisted solution processing of amorphous cobalt sulfide in a thiol/amine based quasi-ionic liquid for oxygen evolution catalysis [J]. Chem. Commun., 2017, 53: 9418-9421. |
98 | Jiang J , Yan C , Zhao X , et al . A PEGylated deep eutectic solvent for controllable solvothermal synthesis of porous NiCo2S4 for efficient oxygen evolution reaction [J]. Green Chem., 2017, 19: 3023-3031. |
99 | Zhao X , Lan X , Yu D , et al . Deep eutectic-solvothermal synthesis of nanostructured Fe3S4 for electrochemical N2 fixation under ambient conditions [J]. Chem. Commun., 2018, 54: 13010-13013. |
100 | Li A , Chen Y , Zhuo K , et al . Facile and shape-controlled electrochemical synthesis of gold nanocrystals by changing water contents in deep eutectic solvents and their electrocatalytic activity [J]. RSC Adv., 2016, 6: 8786-8790. |
101 | Wang M , Tan Q , Liu L , et al . A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries [J]. J. Hazard. Mater., 2019, 380: 120846. |
102 | Aldana-Gonzalez J , Sampayo-Garrido A , Montes de Oca-Yemha M G , et al . Electrochemical nucleation and growth of Mn and Mn-Zn alloy from leached liquors of spent alkaline batteries using a deep eutectic solvent [J]. J. Electrochem. Soc., 2019, 166: 199-204. |
103 | Poll C G , Nelson G W , Pickup D M , et al . Electrochemical recycling of lead from hybrid organic-inorganic perovskites using deep eutectic solvents [J]. Green Chem., 2016, 18: 2946-2955. |
104 | Chen Y , Yu D , Chen W , et al . Water absorption by deep eutectic solvents [J]. Phys. Chem. Chem. Phys., 2019, 21: 2601-2610. |
105 | Chen W , Bai X , Xue Z , et al . The formation and physicochemical properties of PEGylated deep eutectic solvents [J]. New J. Chem., 2019, 43: 8804-8810. |
106 | Chen W , Xue Z , Wang J , et al . Investigation on the thermal stability of deep eutectic solvents [J]. Acta Phys-Chim. Sin., 2018, 34: 904-911. |
107 | Li Q , Jiang J , Li G , et al . The electrochemical stability of ionic liquids and deep eutectic solvents [J]. Sci. China Chem., 2016, 59: 571-577. |
108 | Chen Y , Yu D , Fu L , et al . The dynamic evaporation process of deep eutectic solvent LiTf2N:N-methylacetamide at ambient temperature [J]. Phys. Chem. Chem. Phys., 2019, 21: 11810-11821. |
109 | Chen Y , Yu D , Lu Y , et al . Volatility of deep eutectic solvent choline chloride:N-methylacetamide at ambient temperature and pressure [J]. Ind. Eng. Chem. Res., 2019, 58: 7308-7317. |
[1] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[2] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[3] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[4] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[5] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[6] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[7] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[8] | 王志龙, 杨烨, 赵真真, 田涛, 赵桐, 崔亚辉. 搅拌时间和混合顺序对锂离子电池正极浆料分散特性的影响[J]. 化工学报, 2023, 74(7): 3127-3138. |
[9] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[10] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 李靖, 沈聪浩, 郭大亮, 李静, 沙力争, 童欣. 木质素基碳纤维复合材料在储能元件中的应用研究进展[J]. 化工学报, 2023, 74(6): 2322-2334. |
[13] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[14] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[15] | 郭旭, 张永政, 夏厚兵, 杨娜, 朱真珍, 齐晶瑶. 碳基材料电氧化去除水体污染物的研究进展[J]. 化工学报, 2023, 74(5): 1862-1874. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||