化工学报 ›› 2020, Vol. 71 ›› Issue (1): 92-105.DOI: 10.11949/0438-1157.20191176
收稿日期:
2019-10-11
修回日期:
2019-11-01
出版日期:
2020-01-05
发布日期:
2020-01-05
通讯作者:
雷志刚
作者简介:
桂成敏(1997—),男,硕士研究生, 基金资助:
Chengmin GUI(),Ruisong ZHU,Jie ZHANG,Zhigang LEI()
Received:
2019-10-11
Revised:
2019-11-01
Online:
2020-01-05
Published:
2020-01-05
Contact:
Zhigang LEI
摘要:
离子液体(ionic liquids, ILs)被视为化工中传统溶剂的优良替代物,使用它们作为溶剂吸收可凝性气体时,具有溶剂损失少、无腐蚀和稳定性强等优点。一些ILs具有很强的吸水性,所以在气体干燥领域ILs受到了广泛关注。本文介绍了用于预测气体在ILs中溶解度的预测型分子热力学模型和气体在ILs中的实验测量方法,具体分析了ILs对CH4、CO2等气体的干燥机理和工艺,最后对ILs用于气体干燥的基础研究作出展望。
中图分类号:
桂成敏, 朱瑞松, 张傑, 雷志刚. 离子液体气体干燥技术的研究进展[J]. 化工学报, 2020, 71(1): 92-105.
Chengmin GUI, Ruisong ZHU, Jie ZHANG, Zhigang LEI. Progress on ionic liquids for gas drying[J]. CIESC Journal, 2020, 71(1): 92-105.
1 | 邹才能, 赵群, 张国生, 等. 能源革命:从化石能源到新能源[J]. 天然气工业, 2016, 36(1): 1-10. |
Zou C N, Zhao Q, Zhang G S, et al. Energy revolution: from fossil energy to new energy[J]. Nature Gas Industry, 2016, 36(1): 1-10. | |
2 | 高振宇, 高鹏, 周颖. 新形势下中国天然气供需重心变化情况分析[J]. 中外能源, 2019, 24(6): 1-7. |
Gao Z Y, Gao P, Zhou Y. Analysis on the change of China s natural gas supply and demand center under the new situation[J]. Sino-Global Energy, 2019, 24(6): 1-7. | |
3 | Ahmadi M A, Soleimani R, Bahadori A. A computational intelligence scheme for prediction equilibrium water dew point of natural gas in TEG dehydration systems[J]. Fuel, 2014, 137: 145-154. |
4 | Petropoulou E G, Voutsas E C. Thermodynamic modeling and simulation of natural gas dehydration using triethylene glycol with the UMR-PRU model[J]. Industrial & Engineering Chemistry Research, 2018, 57(25): 8584-8604. |
5 | Kong Z Y, Mahmoud A, Liu S, et al. Development of a techno-economic framework for natural gas dehydration via absorption using tri-ethylene glycol: a comparative study on conventional and stripping gas dehydration processes[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(3): 955-963. |
6 | Kolwas M, Jakubczyk D, Do D T, et al. Evaporation of a free microdroplet of a binary mixture of liquids with different volatilities[J]. Soft Matter, 2019, 15(8): 1825-1832. |
7 | Netusil M, Ditl P. Comparison of three methods for natural gas dehydration [J]. Journal of Natural Gas Chemistry, 2011, 20(5): 471-476. |
8 | Wang X, Zeng S, Wang J, et al. Selective separation of hydrogen sulfide with pyridinium-based ionic liquids[J]. Industrial & Engineering Chemistry Research, 2018, 57(4): 1284-1293. |
9 | Jiang Y, Taheri M, Yu G, et al. Experiments, modeling, and simulation of CO2 dehydration by ionic liquid, triethylene glycol, and their binary mixtures[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15588-15597. |
10 | Paduszyński K, Królikowski M. An effect of cation s cyano group on interactions between organic solutes and ionic liquids elucidated by thermodynamic data at infinite dilution[J]. Journal of Molecular Liquids, 2017, 243: 726-736. |
11 | 张志刚, 张德彪, 张亲亲, 等. 基于COSMO-RS方法筛选离子液体分离乙酸乙酯-乙腈共沸物[J]. 化工学报, 2019, 70(1): 146-153. |
Zhang Z G, Zhang D B, Zhang Q Q, et al. Screening ionic liquid separation of ethyl acetate-acetonitrile azeotrope based on COSMO-RS method[J]. CIESC Journal, 2019, 70(1): 146-153. | |
12 | Ferrarini F, Flôres G B, Muniz A R, et al. An open and extensible sigma-profile database for COSMO-based models[J]. AIChE Journal, 2018, 64(9): 3443-3455. |
13 | Safamirzaei M, Modarress H. Correlating and predicting low pressure solubility of gases in [BMIM][BF4] by neural network molecular modeling[J]. Thermochimica Acta, 2012, 545: 125-130. |
14 | Huang Y, Wan Z, Yang Z, et al. Concentration-dependent hydrogen bond behavior of ethylammonium nitrate protic ionic liquid-water mixtures explored by molecular dynamics simulations[J]. Journal of Chemical & Engineering Data, 2017, 62(8): 2340-2349. |
15 | Krannich M, Heym F, Jess A. Characterization of six hygroscopic ionic liquids with regard to their suitability for gas dehydration: density, viscosity, thermal and oxidative stability, vapor pressure, diffusion coefficient, and activity coefficient of water[J]. Journal of Chemical & Engineering Data, 2016, 61(3): 1162-1176. |
16 | Krannich M, Heym F, Jess A. Continuous gas dehydration using the hygroscopic ionic liquid [EMIM][MeSO3] as a promising alternative absorbent[J]. Chemical Engineering & Technology, 2016, 39(2): 343-353. |
17 | Lei Z, Zhang J, Li Q, et al. UNIFAC model for ionic liquids[J]. Industrial & Engineering Chemistry Research, 2009, 48(5): 2697-2704. |
18 | Santiago R S, Santos G R, Aznar M. Liquid–liquid equilibrium in ternary ionic liquid systems by UNIFAC: new volume, surface area and interaction parameters[J]. Fluid Phase Equilibria, 2010, 295(1): 93-97. |
19 | Chong F K, Foo D C Y, Eljack F T, et al. Ionic liquid design for enhanced carbon dioxide capture by computer-aided molecular design approach[J]. Clean Technologies and Environmental Policy, 2015, 17(5): 1301-1312. |
20 | Nebig S, Gmehling J. Prediction of phase equilibria and excess properties for systems with ionic liquids using modified unifac: typical results and present status of the modified UNIFAC matrix for ionic liquids[J]. Fluid Phase Equilibria, 2011, 302(1/2): 220-225. |
21 | Sun G, Huang W, Zheng D, et al. Vapor-liquid equilibrium prediction of ammonia-ionic liquid working pairs of absorption cycle using UNIFAC model[J]. Chinese Journal of Chemical Engineering, 2014, 22(1): 72-78. |
22 | Yu G, Dai C, Lei Z. Modified UNIFAC-Lei model for ionic liquid-methane systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(20): 7064-7076. |
23 | Shang W, Cui X, Yu X, et al. Isobaric vapor-liquid equilibrium for methanol+methyl acetate with ionic liquids [OMMIM][TF2N] and [OMIM][TF2N] as entrainers at 101.3 kPa[J]. Fluid Phase Equilibria, 2018, 473: 90-97. |
24 | Zhu Z, Hu J, Wang Y, et al. Prediction of ammonia solubility in ionic liquids using UNIFAC model[J]. Chemical Engineering Transactions, 2017, 61: 655-660. |
25 | Lei Z, Dai C, Liu X, et al. Extension of the UNIFAC model for ionic liquids[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 12135-12144. |
26 | Domańska U, Mazurowska L. Solubility of 1,3-dialkylimidazolium chloride or hexafluorophosphate or methylsulfonate in organic solvents: effect of the anions on solubility[J]. Fluid Phase Equilibria, 2004, 221(1/2): 73-82. |
27 | Xue Z, Mu T, Gmehling J. Comparison of the a priori COSMO-RS models and group contribution methods: original UNIFAC, modified UNIFAC(Do), and modified UNIFAC(Do) consortium[J]. Industrial & Engineering Chemistry Research, 2012, 51(36): 11809-11817. |
28 | Hansen H K, Rasmussen P, Fredenslund A, et al. Vapor-liquid equilibria by UNIFAC group contribution(5):Revision and extension[J]. Industrial & Engineering Chemistry Research, 1991, 30(10): 2352-2355. |
29 | Bermejo M D, Fieback T M, Á Martín. Solubility of gases in 1-alkyl-3methylimidazolium alkyl sulfate ionic liquids: experimental determination and modeling[J]. The Journal of Chemical Thermodynamics, 2013, 58: 237-244. |
30 | Jacquemin J, Costa G M F, Husson P, et al. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric[J]. The Journal of Chemical Thermodynamics, 2006, 38(4): 490-502. |
31 | Kumełan J, Á Pérez-Salado K, Tuma D, et al. Solubility of the single gases H2 and CO in the ionic liquid [BMIM][CH3SO4][J]. Fluid Phase Equilibria, 2007, 260(1): 3-8. |
32 | Liu X, Afzal W, Prausnitz J M. Solubilities of small hydrocarbons in [P444][TMPP] and in [EMIM][TF2N][J]. Industrial & Engineering Chemistry Research, 2013, 52(42): 14975-14978. |
33 | Nocon G, Weidlich U, Gmehling J, et al. Prediction of gas solubilities by a modified UNIFAC equation[J]. Berichte der Bunsengesellschaft für Physikalische Chemie, 1983, 87(1): 17-23. |
34 | Lei Z, Dai C, Wei W, et al. UNIFAC model for ionic liquid-CO2 systems[J]. AIChE Journal, 2014, 60(2): 716-729. |
35 | Han J, Lei Z, Dong Y, et al. Process intensification on the separation of benzene and thiophene by extractive distillation[J]. AIChE Journal, 2015, 61(12): 4470-4480. |
36 | Dai C, Dong Y, Han J, et al. Separation of benzene and thiophene with a mixture of NMP and ionic liquid as the entrainer[J]. Fluid Phase Equilibria, 2015, 388(3): 142-150. |
37 | Eckert F, Klamt A. Fast solvent screening via quantum chemistry: COSMO-RS approach[J]. AIChE Journal, 2002, 48(2): 369-385. |
38 | Han J, Dai C, Lei Z, et al. Gas drying with ionic liquids[J]. AIChE Journal, 2018, 64(2): 606-619. |
39 | Khan I, Taha M, Pinho S P, et al. Interactions of pyridinium, pyrrolidinium or piperidinium based ionic liquids with water: measurements and COSMO-RS modelling[J]. Fluid Phase Equilibria, 2016, 414: 93-100. |
40 | Neves C M S S, Batista M L S, Claudio A F M, et al. Thermophysical properties and water saturation of [PF6]- based ionic liquids[J]. Journal of Chemical & Engineering Data, 2010, 55(11): 5065-5073. |
41 | Manan N A, Hardacre C, Jacquemin J, et al. Evaluation of gas solubility prediction in ionic liquids using cosmothermx[J]. Journal of Chemical & Engineering Data, 2009, 54(7): 2005-2022. |
42 | Han J, Dai C, Yu G, et al. Parameterization of COSMO-RS model for ionic liquids[J]. Green Energy & Environment, 2018, 3(3): 75-93. |
43 | Bianca B, Bottini S B, Geert Jan W, et al. Thermodynamic modeling of the phase behavior of binary systems of ionic liquids and carbon dioxide with the group contribution equation of state[J]. Journal of Physical Chemistry B, 2007, 111(51): 14265-14270. |
44 | Pereda S, Raeissi S, Andreatta A E, et al. Modeling gas solubilities in imidazolium based ionic liquids with the [TF2N] anion using the GC-EOS[J]. Fluid Phase Equilibria, 2016, 409: 408-416. |
45 | Kühne E, Martin A, Witkamp G J, et al. Modeling the phase behavior of ternary systems ionic liquid+organic+CO2 with a group contribution equation of state[J]. AIChE Journal, 2009, 55(5): 1265-1273. |
46 | Mota M M T, Kroon M C, Peters C J. Modeling CO2 solubility in an ionic liquid: a comparison between a cubic and a group contribution EOS[J]. The Journal of Supercritical Fluids, 2015, 101: 54-62. |
47 | Dai C, Lei Z, Wang W, et al. Group contribution lattice fluid equation of state for CO2-ionic liquid systems: an experimental and modeling study[J]. AIChE Journal, 2013, 59(11): 4399-4412. |
48 | Kim Y S, Choi W Y, Jang J H, et al. Solubility measurement and prediction of carbon dioxide in ionic liquids[J]. Fluid Phase Equilibria, 2005, 228: 439-445. |
49 | Camper D, Becker C, Koval C, et al. Diffusion and solubility measurements in room temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2006, 45(1): 445-450. |
50 | Dai C, Wu L, Yu G, et al. Syngas dehydration with ionic liquids[J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14642-14650. |
51 | Palgunadi J, Kang J E, Nguyen D Q, et al. Solubility of CO2 in dialkylimidazolium dialkylphosphate ionic liquids[J]. Thermochimica Acta, 2009, 494(1/2): 94-98. |
52 | Sardar S, Wilfred C D, Mumtaz A, et al. Investigation of the thermophysical properties of AMPS-based aprotic ionic liquids for potential application in CO2 sorption processes[J]. Journal of Chemical & Engineering Data, 2017, 62(12): 4160-4168. |
53 | Ji E K, Lim J S, Kang J W. Measurement and correlation of solubility of carbon dioxide in 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids[J]. Fluid Phase Equilibria, 2011, 306(2): 251-255. |
54 | Muldoon M J, Aki S N, Anderson J L, et al. Improving carbon dioxide solubility in ionic liquids[J]. Journal of Physical Chemistry B, 2007, 111(30): 9001-9009. |
55 | He M, Peng S, Liu X, et al. Diffusion coefficients and Henry s constants of hydrofluorocarbons in [HMIM][TF2N], [HMIM][TFO], and [HMIM][BF4][J]. The Journal of Chemical Thermodynamics, 2017, 112: 43-51. |
56 | Hou Y, Baltus R E. Experimental measurement of the solubility and diffusivity of CO2 in room-temperature ionic liquids using a transient thin-liquid-film method[J]. Industrial & Engineering Chemistry Research, 2007, 46(24): 8166-8175. |
57 | Francesco F D, Calisi N, Creatini M, et al. Water sorption by anhydrous ionic liquids[J]. Green Chemistry, 2011, 13(7): 1712-1717. |
58 | Cao Y, Chen Y, Lu L, et al. Water sorption in functionalized ionic liquids: kinetics and intermolecular interactions[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 2073-2083. |
59 | Cao Y, Chen Y, Sun X, et al. Water sorption in ionic liquids: kinetics, mechanisms and hydrophilicity[J]. Physical Chemistry Chemical Physics, 2012, 14(35): 12252-12262. |
60 | Yu G, Dai C, Gao H, et al. Capturing condensable gases with ionic liquids[J]. Industrial & Engineering Chemistry Research, 2018, 57(36): 12202-12214. |
61 | Wang Y, Li H R, Han S J. A theoretical investigation of the interactions between water molecules and ionic liquids[J]. Journal of Physical Chemistry B, 2006, 110(48): 24646-24651. |
62 | Mcdaniel J G, Verma A. On the miscibility and immiscibility of ionic liquids and water[J]. The Journal of Physical Chemistry B, 2019, 123(25): 5343-5356. |
63 | Seddon K R, Stark A, Torres M J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids[J]. Pure and Applied Chemistry, 2000, 72(12): 2275-2287. |
64 | Domańska U, Królikowska M. Density and viscosity of binary mixtures of thiocyanate ionic liquids + water as a function of temperature[J]. Journal of Solution Chemistry, 2012, 41(8): 1422-1445. |
65 | Tanner E E L, Piston K M, Ma H, et al. The influence of water on choline-based ionic liquids[J]. ACS Biomaterials Science & Engineering, 2019, 5(7): 3645-3653. |
66 | Stéphane S, Ajda P E, Pádua A H, et al. Effect of water on the carbon dioxide absorption by 1-alkyl-3-methylimidazolium acetate ionic liquids[J]. Journal of Physical Chemistry B, 2012, 116(49): 14416-14425. |
67 | Zakrzewska M E, Nunes Da Ponte M. Influence of water on the carbon dioxide solubility in [TFO]- and [EFAP] - based ionic liquids[J]. Journal of Chemical & Engineering Data, 2017, 63(4): 907-912. |
68 | Hasib-Ur-Rahman M, Siaj M, Larachi F. Ionic liquids for CO capture-development and progress[J]. Chemical Engineering Processing: Process Intensification, 2010, 49(4): 313-322. |
69 | Yu G, Sui X, Lei Z, et al. Air-drying with ionic liquids[J]. AIChE Journal, 2019, 65(2): 479-482. |
70 | Ghiasi M M, Bahadori A, Zendehboudi S, et al. Rigorous models to optimise stripping gas rate in natural gas dehydration units[J]. Fuel, 2015, 140: 421-428. |
71 | Yu G, Dai C, Wu L, et al. Natural gas dehydration with ionic liquids[J]. Energy & Fuels, 2017, 31(2): 1429-1439. |
72 | Sarwono A, Man Z, Idris A, et al. Alkyd paint removal: ionic liquid vs volatile organic compound (VOC)[J]. Progress in Organic Coatings, 2018, 122: 79-87. |
73 | Wu L, Geng W, Gao L, et al. Study of gas dehydration process by ionic liquid method in a rotating packed bed[J]. Energy & Fuels, 2017, 31(12): 13400-13405. |
[1] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[3] | 王琪, 张斌, 张晓昕, 武虎建, 战海涛, 王涛. 氯铝酸-三乙胺离子液体/P2O5催化合成伊索克酸和2-乙基蒽醌[J]. 化工学报, 2023, 74(S1): 245-249. |
[4] | 车睿敏, 郑文秋, 王小宇, 李鑫, 许凤. 基于离子液体的纤维素均相加工研究进展[J]. 化工学报, 2023, 74(9): 3615-3627. |
[5] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[6] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[7] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[8] | 王俐智, 杭钱程, 郑叶玲, 丁延, 陈家继, 叶青, 李进龙. 离子液体萃取剂萃取精馏分离丙酸甲酯+甲醇共沸物[J]. 化工学报, 2023, 74(9): 3731-3741. |
[9] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[10] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[11] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[12] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[13] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[14] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[15] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||