化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1812-1821.DOI: 10.11949/0438-1157.20190911
收稿日期:
2019-08-09
修回日期:
2019-12-27
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
李瑞申
作者简介:
杨永安(1962—),男,高级工程师,硕士生导师, 基金资助:
Yong an YANG1(),Ruishen LI1(
),Kun LI2,Tianhui SUN2
Received:
2019-08-09
Revised:
2019-12-27
Online:
2020-04-05
Published:
2020-04-05
Contact:
Ruishen LI
摘要:
针对空气源热泵在寒冷地区应用中存在的诸多问题,结合复叠式循环与压缩机直流调速技术,提出一种采用R410A单一工质的复叠式空气源热泵(SC-ASHP)系统,既可以按照传统单级压缩制热(SHC)模式运行,又可按复叠式制热(CHC)模式运行。不同工况下,对SC-ASHP系统在两种不同制热模式运行时的压缩比、排气温度、制热量与性能系数(COP)进行了模拟计算与实验研究,结果表明:低温环境下,CHC模式压缩比和排气温度远低于SHC模式;在冷凝温度46℃,蒸发温度-35℃工况下,CHC模式COP高于1.8,压缩机排气温度低于120℃,高低温压缩机压缩比均不超过5.0,系统可以稳定可靠运行;此外,CHC模式下提高低温压缩机转速可以持续提高系统制热量,满足低温环境下的供暖需求;新系统扩大了空气源热泵系统的应用范围。
中图分类号:
杨永安, 李瑞申, 李坤, 孙天慧. 采用R410A单一工质的复叠式空气源热泵[J]. 化工学报, 2020, 71(4): 1812-1821.
Yong an YANG, Ruishen LI, Kun LI, Tianhui SUN. Cascade air-source heat pump with R410A single fluid[J]. CIESC Journal, 2020, 71(4): 1812-1821.
Mode | Solenoid valve-Ⅰ | Solenoid valve-Ⅱ | Solenoid valve-Ⅲ | Four-way valve | EEV-Ⅰ | EEV-Ⅱ | Upper stage compressor | Lower stage compressor |
---|---|---|---|---|---|---|---|---|
SRC | OFF | OFF | ON | OFF | OFF | ON | OFF | ON |
SHC | ON | OFF | ON | ON | OFF | ON | OFF | ON |
CHC | ON | ON | OFF | ON | ON | ON | ON | ON |
表1 不同运行模式下各阀门及压缩机状态
Table 1 State of every valve and compressors
Mode | Solenoid valve-Ⅰ | Solenoid valve-Ⅱ | Solenoid valve-Ⅲ | Four-way valve | EEV-Ⅰ | EEV-Ⅱ | Upper stage compressor | Lower stage compressor |
---|---|---|---|---|---|---|---|---|
SRC | OFF | OFF | ON | OFF | OFF | ON | OFF | ON |
SHC | ON | OFF | ON | ON | OFF | ON | OFF | ON |
CHC | ON | ON | OFF | ON | ON | ON | ON | ON |
Equipment | Model | Manufacturer |
---|---|---|
lower-stage compressor | LNB42FSCMC | MITSUBISHI |
upper-stage compressor | TNB220FFEMC | MITSUBISHI |
electronic expansion valve | E2V30BSM00, E2V24BSM00 | CAREL |
electric control valve | VAI61.20-6.3 | SIEMENS |
solenoid valve | EVR15 | DANFOSS |
cascade heat exchange | A=3.10 m2 | AIBAOSY |
evaporator | ? 9.52 mm,1.73 m2 | — |
electric heating tube | 12 kW | — |
condenser | n=5,A=3.47 m2 | DONGDA |
water tank | 1250 mm×700 mm×1250 mm | — |
表2 实验系统主要配置
Table 2 Main equipment of experiment system
Equipment | Model | Manufacturer |
---|---|---|
lower-stage compressor | LNB42FSCMC | MITSUBISHI |
upper-stage compressor | TNB220FFEMC | MITSUBISHI |
electronic expansion valve | E2V30BSM00, E2V24BSM00 | CAREL |
electric control valve | VAI61.20-6.3 | SIEMENS |
solenoid valve | EVR15 | DANFOSS |
cascade heat exchange | A=3.10 m2 | AIBAOSY |
evaporator | ? 9.52 mm,1.73 m2 | — |
electric heating tube | 12 kW | — |
condenser | n=5,A=3.47 m2 | DONGDA |
water tank | 1250 mm×700 mm×1250 mm | — |
1 | 陈子丹, 罗会龙, 刘锦春, 等. 寒冷地区CO2空气源热泵供暖运行性能分析[J]. 化工学报, 2018, 69(9): 4030-4036. |
Chen Z D, Luo H L, Liu J C, et al. Analysis of heating performance of CO2 air-source heat pump in cold region[J]. CIESC Journal, 2018, 69(9): 4030-4036. | |
2 | 沈明, 宋之平. 空气源热泵应用范围北扩的可能性分析及其技术措施述评[J]. 暖通空调, 2002, (6): 37-39. |
Shen M, Song Z P. Applicability of air-source heat pumps in colder climate and relevant measures[J]. Heating Ventilating & Air Conditioning, 2002, (6): 37-39. | |
3 | 柴沁虎, 马国远. 空气源热泵低温适应性研究的现状及进展[J]. 能源工程, 2002, (5): 25-31. |
Chai Q H, Ma G Y. State of knowledge and current challenges in the ASHP developed for the cold areas[J]. Energy Engineering, 2002, (5): 25-31. | |
4 | Chua K J, Chou S K, Yang W M. Advances in heat pump systems: a review[J]. Applied Energy, 2010, 87(12): 3611-3624. |
5 | 李玮豪, 邱君君, 张小松. 无霜空气源热泵系统冬季运行性能实验[J]. 化工学报, 2018, 69(12): 5220-5228. |
Li W H, Qiu J J, Zhang X S. Experimental research on new type of frost-free air source heat pump system in winter[J]. CIESC Journal, 2018, 69(12): 5220-5228. | |
6 | 徐俊芳, 赵耀华, 全贞花, 等. 新型空气-水双热源复合热泵系统除霜特性及能耗[J]. 化工学报, 2018, 69(6): 2646-2654. |
Xu J F, Zhao Y H, Quan Z H, et al. Defrosting characteristics and energy consumption of new air-water dual source composite heat pump system[J]. CIESC Journal, 2018, 69(6): 2646-2654. | |
7 | 张森林.空气源热泵低温特性研究[D]. 天津: 天津商业大学, 2014. |
Zhang S L. Researching on the performance of air source heat pump in low temperature[D]. Tianjin: Tianjin University of Commerce, 2014. | |
8 | 武文彬, 王伟, 金苏敏, 等. 两级压缩空气源热泵热水器实验研究[J]. 制冷学报, 2009, 30(1): 35-38. |
Wu W B, Wang W, Jin S M, et al. Experiment on two-stage compression air-source heat pump water heater[J]. Journal of Refrigeration, 2009, 30(1): 35-38. | |
9 | 石文星, 田长青, 王森. 寒冷地区用空气源热泵的技术进展[J]. 流体机械, 2003, 31(z1): 43-48. |
Shi W X, Tian C Q, Wang S. Technical review of air-source heat pump for cold regions[J]. Fluid Machinery, 2003, 31(z1): 43-48. | |
10 | 王伟, 马最良, 姚杨. 空气源热泵机组新型低温运行工况稳态特性研究[J]. 建筑科学, 2007, 23(10): 28-31. |
Wang W, Ma Z L, Yao Y. Study on steady state characteristics of air source heat pump (ASHP) under new working conditions in cold environment[J]. Building Science, 2007, 23(10): 28-31. | |
11 | Bertsch S S, Groll E A. Two-stage air-source heat pump for residential heating and applications in northern U. S. climates[J]. International Journal of Refrigeration, 2008, 31(7): 1282-1292. |
12 | Wang X D, Hwang Y, Radermacher R. Two-stage heat pump system with vapor-injected scroll compressor using R410A as a refrigerant[J]. International Journal of Refrigeration, 2009, 32(6): 1442-1451. |
13 | Jin X, Wang S G, Zhang T F. Intermediate pressure of two-stage compression system under different conditions based on compressor coupling model[J]. International Journal of Refrigeration, 2012, 35(4): 827-840. |
14 | 金旭, 王树刚, 张腾飞, 等. 变工况双级压缩中间压力及其对系统性能的影响[J]. 化工学报, 2012, 63(1): 96-102. |
Jin X, Wang S G, Zhang T F, et al. Intermediate pressure and its effect on performance of two-stage compression system with variable operating mode[J]. CIESC Journal, 2012, 63(1): 96-102. | |
15 | 田长青, 石文星, 王森. 用于寒冷地区双级压缩变频空气源热泵的研究[J]. 太阳能学报, 2004, (3): 388-393. |
Tian C Q, Shi W X, Wang S. Research on two-stage compression variable frequent air source heat pump in cold regions[J]. Acta Energiae Solaris Sinica, 2004, (3): 388-393. | |
16 | 蒋爽, 王树刚, 王凤. 双级压缩空气源热泵制热性能仿真优化[J]. 中国科技论文, 2017, 12(1): 24-31. |
Jiang S, Wang S G, Wang F. Heating performance optimization of a two-stage compression air source heat pump based on simulation[J]. China Science Paper, 2017, 12(1): 24-31. | |
17 | 李双双, 王树刚. 变频双级压缩空气源热泵系统中间喷射状态对性能的影响研究[J]. 建筑科学, 2016, 32(8): 56-63. |
Li S S, Wang S G. Study on impact of intermediate injection conditions on performance of two-stage compression source heat pumps with frequency conversion[J]. Building Science, 2016, 32(8): 56-63. | |
18 | Zehnder M. Efficient air-water heat pumps for high temperature life residential heating including oil migration aspects[R]. Swiss: Laboratory of Industrial Energetics, 2000. |
19 | 王沣浩, 王志华, 郑煜鑫, 等. 低温环境下空气源热泵的研究现状及展望[J]. 制冷学报, 2013, 34(5): 47-54. |
Wang F H, Wang Z H, Zheng Y X, et al. Research progress and prospect of air source heat pump in low temperature environment[J]. Journal of Refrigeration, 2013, 34(5): 47-54. | |
20 | Roh C W, Kim M S. Effect of vapor-injection technique on the performance of a cascade heat pump water heater[J]. International Journal of Refrigeration, 2014, 38: 168-177. |
21 | 巫江虹, 游少芳, 谢方, 等. 蓄热型热泵热水器单级与复叠式循环性能比较[J]. 化工学报, 2011, 62(7): 1879-1884. |
Wu J H, You S F, Xie F, et al. Performance comparison of single stage and cascade heat pump water heater with PCM [J]. CIESC Journal, 2011, 62(7): 1879-1884. | |
22 | Kim D H, Park H S, Kim M S. Optimal temperature between high and low stage cycles for R134a/R410A cascade heat pump based water heater system[J]. Experimental Thermal and Fluid Science, 2013, 47: 172-179. |
23 | 天津商业大学.变流量单工质共用换热器复叠热泵系统: 201610288319.8[P]. 2016-07-20. |
Tianjin University of Commerce. Variable flow single-fluid shared heat exchanger cascade heat pump system: 201610288319.8[P]. 2016-07-20. | |
24 | 曲明璐, 李天瑞, 樊亚男, 等. 复叠式空气源热泵蓄能除霜与常规除霜特性实验研究[J]. 制冷学报, 2017, 38(1): 34-39. |
Qu M L, Li T R, Fan Y N, et al. Experimental study on characteristics of energy storage defrosting and conventional defrosting for cascade air source heat pump[J]. Journal of Refrigeration, 2017, 38(1): 34-39. | |
25 | Qu M L, Fan Y N, Chen J B, et al. Experimental study of a control strategy for a cascade air source heat pump water heater [J]. Applied Thermal Engineering, 2016, 110: 835-843. |
26 | 张红瑞, 刘学来, 李永安, 等. 节能高效空气源复叠式热泵系统[J]. 暖通空调, 2010, 40(11): 108-112. |
Zhang H R, Liu X L, Li Y A, et al. Energy-efficient cascade air-source heat pump system[J]. Heating Ventilating & Air Conditioning, 2010, 40(11): 108-112. | |
27 | 王林, 陈光明, 陈斌, 等. 一种用于低温环境下新型空气源热泵循环研究[J]. 制冷学报, 2005, 26 (2): 34-38. |
Wang L, Chen G M, Chen B, et al. Cycle analysis of heating and refrigeration in new air-source heat pump [J]. Journal of Refrigeration, 2005, 26(2): 34-38. | |
28 | 浙江大学. 扩大在低温环境下热泵制热能力的方法及装置: 03115636.3[P]. 2003-08-20. |
University Zhejiang. Method and device for expanding heat pump heating capacity in low temperature environment: 03115636.3[P]. 2003-08-20. | |
29 | 余延顺, 何雪强, 江辉民, 等. 单-双级混合复叠空气源热泵机组制热性能实验研究[J]. 南京理工大学学报(自然科学版), 2012, 36(6): 1036-1041. |
Yu Y S, He X Q, Jiang H M, et al. Experimental study on heating performances of hybrid single-double stage cascade air-source heat pump unit[J]. Journal of Nanjing University of Science and Technology, 2012, 36(6): 1036-1041. | |
30 | 谭周芳, 刘剑锋. 空调器模拟设计中的压缩机性能拟合[J]. 制冷, 1997, 58(1): 46-50. |
Tan Z F, Liu J F. Computation of compressor performance curve in air conditioner limitation design[J]. Refrigeration, 1997, 58(1): 46-50. | |
31 | Wen H L. Simplified steady-state modeling for variable speed compressor[J]. Applied Thermal Engineering: Design, Processes, Equipment, Economics, 2013, 50(1): 318-326. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张龙, 宋孟杰, 邵苛苛, 张旋, 沈俊, 高润淼, 甄泽康, 江正勇. 管翅式换热器迎风侧翅片末端霜层生长模拟研究[J]. 化工学报, 2023, 74(S1): 179-182. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[5] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[6] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[7] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[8] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[9] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[10] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[11] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[12] | 宋明昊, 赵霏, 刘淑晴, 李国选, 杨声, 雷志刚. 离子液体脱除模拟油中挥发酚的多尺度模拟与研究[J]. 化工学报, 2023, 74(9): 3654-3664. |
[13] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[14] | 赵佳佳, 田世祥, 李鹏, 谢洪高. SiO2-H2O纳米流体强化煤尘润湿性的微观机理研究[J]. 化工学报, 2023, 74(9): 3931-3945. |
[15] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||