化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1491-1501.DOI: 10.11949/0438-1157.20190964
收稿日期:
2019-08-22
修回日期:
2020-01-14
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
段远源
作者简介:
吴兴辉(1994—),男,博士研究生,基金资助:
Xinghui WU1(),Zhen YANG1,Ying CHEN2,Yuanyuan DUAN1()
Received:
2019-08-22
Revised:
2020-01-14
Online:
2020-04-05
Published:
2020-04-05
Contact:
Yuanyuan DUAN
摘要:
相变材料微胶囊悬浮液是将相变微胶囊颗粒添加至单相流体中形成的一种新型传热介质,由于传热系数高、传热储能一体化等优势,具备很大的发展潜力。采用离散相两相流模型,对恒热流水平圆管中相变微胶囊流体的传热特性进行了模拟计算,通过对比实验数据验证了模型的可靠性,进而定量分析了颗粒尺寸、质量分数、相变潜热,特别是颗粒分布对传热的影响。结果表明随着微胶囊颗粒质量分数增加,颗粒粒径减小,相变潜热增大,壁面传热效果越好,且相变潜热大小对壁温控制和壁面传热的影响大于颗粒质量分数和颗粒尺寸的影响。比较了离散相模型与常用的单相流模型的计算结果,发现质量分数越高,颗粒集聚程度越高,单相流模型计算的偏差越大。
中图分类号:
吴兴辉, 杨震, 陈颖, 段远源. 基于离散相模型的相变微胶囊流体传热特性数值模拟[J]. 化工学报, 2020, 71(4): 1491-1501.
Xinghui WU, Zhen YANG, Ying CHEN, Yuanyuan DUAN. Simulation studies on heat transfer characteristics of PCM micro-encapsulated fluids based on discrete phase model[J]. CIESC Journal, 2020, 71(4): 1491-1501.
材料 | ρ/(kg/m3) | cp /(J/(kg·K)) | k/(W/(m·K)) | ?H/(kJ/kg) |
---|---|---|---|---|
PMMA | 1,190 | 1,470 | 0.21 | |
石蜡 | 931.4 | 2,136 | 0.2 | 190 |
表1 PMMA和石蜡的物理性质
Table 1 Physical properties of PMMA and paraffin
材料 | ρ/(kg/m3) | cp /(J/(kg·K)) | k/(W/(m·K)) | ?H/(kJ/kg) |
---|---|---|---|---|
PMMA | 1,190 | 1,470 | 0.21 | |
石蜡 | 931.4 | 2,136 | 0.2 | 190 |
质量分数ω/% | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
2 | 3.69 | — | 9.83 | — |
5 | 3.18 | 13.8 | 10.1 | 2.44 |
8 | 2.9 | 21.4 | 10.2 | 3.76 |
表2 不同微胶囊颗粒质量分数对比
Table 2 Comparison of microcapsules with different mass fraction
质量分数ω/% | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
2 | 3.69 | — | 9.83 | — |
5 | 3.18 | 13.8 | 10.1 | 2.44 |
8 | 2.9 | 21.4 | 10.2 | 3.76 |
粒径大小/μm | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
100 | 4 | — | 9.69 | — |
50 | 3.84 | 4 | 9.76 | 0.72 |
10 | 3.18 | 20.5 | 10.1 | 3.92 |
表3 不同微胶囊颗粒粒径大小对比
Table 3 Comparison of microcapsules with different particle size
粒径大小/μm | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
100 | 4 | — | 9.69 | — |
50 | 3.84 | 4 | 9.76 | 0.72 |
10 | 3.18 | 20.5 | 10.1 | 3.92 |
微胶囊 | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
不发生相变的微胶囊 | 3.9 | — | 9.74 | — |
常规相变的微胶囊 | 3.18 | 18.5 | 10.1 | 3.39 |
相变潜热为正常值两倍时的相变微胶囊 | 2.98 | 23.6 | 10.2 | 4.31 |
表4 不同相变潜热对比
Table 4 Comparison of microcapsules with different latent heat
微胶囊 | ?T/K | ?T减小/% | Nu | 提升/% |
---|---|---|---|---|
不发生相变的微胶囊 | 3.9 | — | 9.74 | — |
常规相变的微胶囊 | 3.18 | 18.5 | 10.1 | 3.39 |
相变潜热为正常值两倍时的相变微胶囊 | 2.98 | 23.6 | 10.2 | 4.31 |
模型 | 离散相 | 单相流 | 相对偏差/% |
---|---|---|---|
2%出流面?T/K | 3.69 | 4.21 | 14.1 |
2%壁面Nu | 9.83 | 9.60 | -2.34 |
5%出流面?T/K | 3.18 | 3.70 | 16.4 |
5%壁面Nu | 10.1 | 9.83 | -2.38 |
8%出流面?T/K | 2.90 | 3.40 | 17.2 |
8%壁面Nu | 10.2 | 9.96 | -2.35 |
表5 单相流模型与离散相模型对比
Table 5 Comparison between discrete phase model and single phase model
模型 | 离散相 | 单相流 | 相对偏差/% |
---|---|---|---|
2%出流面?T/K | 3.69 | 4.21 | 14.1 |
2%壁面Nu | 9.83 | 9.60 | -2.34 |
5%出流面?T/K | 3.18 | 3.70 | 16.4 |
5%壁面Nu | 10.1 | 9.83 | -2.38 |
8%出流面?T/K | 2.90 | 3.40 | 17.2 |
8%壁面Nu | 10.2 | 9.96 | -2.35 |
1 | Cui Y , Xie J , Liu J , et al . A review on phase change material application in building[J]. Adv. Mech. Eng., 2017, 9(6): 168781401770082. |
2 | Pasupathy A , Velraj R , Seeniraj R V , et al . Phase change material-based building architecture for thermal management in residential and commercial establishments[J]. Renew. Sust. Energ. Rev., 2008, 12(1): 39-64. |
3 | 陈思彤, 李微微, 王学科, 等 . 相变材料用于质子交换膜燃料电池的热管理[J]. 化工学报, 2016, 67: 1-6. |
Chen S T , Li W W , Wang X K , et al . Phase change materials are used for thermal management of proton exchange membrane fuel cells[J]. CIESC Journal, 2016, 67: 1-6. | |
4 | Tian Y , Liu Y , Zhang L , et al . Preparation and characterization of gelatin-sodium alginate/paraffin phase change microcapsules[J]. Colloids Surfaces A, 2019, 586: 124216. |
5 | 赖艳华, 吴涛, 魏露露, 等 . 基于相变材料的电子元件的散热性能[J]. 化工学报, 2014, 65: 157-161. |
Lai Y H , Wu T , Wei L L , et al . Heat dissipation performance of electronic components based on phase change materials[J]. CIESC Journal, 2014, 65: 157-161. | |
6 | Hao Z , Kai C , Ge Z , et al . Binary semiconductor In2Te3 for the application of phase-change memory device[J]. J. Mater. Sci., 2010, 45(13): 3569-3574. |
7 | Sharma A , Tyagi V V , Chen C R , et al . Review on thermal energy storage with phase change materials and applications[J]. Renew. Sust. Energ. Rev., 2009, (13): 318-345. |
8 | Farid M M , Khudhair A M , Razack S A K , et al . A review on phase change energy storage: materials and applications[J]. Energ. Convers. Manage., 2004, (45): 1597-1615. |
9 | Delagado M , Lazaro A , Mazo J , et al . Review on phase change material emulsions and microencapsulated phase change material slurries: materials, heat transfer studies and applications[J]. Renew. Sust. Energ. Rev., 2012, (16): 253-273. |
10 | 宋爱宝 . 微胶囊技术的研究和应用[J]. 今日科技, 1990, (6): 10-11. |
Song A B . Research and application of microcapsule technology[J]. Today Science & Technology, 1990, (6): 10-11. | |
11 | Li X , Sun L , Sui H , et al . A novel polymeric adsorbent embedded with phase change materials (PCMs) microcapsules: synthesis and application[J]. Nanomaterials, 2019, 9(5): 736. |
12 | Wang X , Chen Z , Xu W , et al . Capric acid phase change microcapsules modified with graphene oxide for energy storage[J]. J. Mater. Sci., 2019, 54(3): 14834-14844. |
13 | 钟小龙, 刘东, 胥海伦 . 微小管道内相变微胶囊悬浮液换热特性[J]. 化工学报, 2016, 67: 203-209. |
Zhong X L , Liu D , Xu H L . Heat transfer characteristics of micro-encapsulated phase change material suspension in mini-tubes[J]. CIESC Journal, 2016, 67: 203-209. | |
14 | 李杰, 刘红研, 汪树军, 等 . 密胺树脂硫磺微胶囊的制备及应用[J]. 化工学报, 2011, 62(6): 1716-1722. |
Li J , Liu H Y , Wang S J , et al . Preparation and application of melamine resin sulfur microcapsules[J]. CIESC Journal, 2011, 62(6): 1716-1722. | |
15 | 梅乐和, 姚善泾, 林东强, 等 . NaCS-PDADMAC生物微胶囊对苏云金杆菌的生物相容性[J]. 化工学报, 1999, 50(5): 592-597. |
Mei L H , Yao S J , Lin D Q , et al . Biocompatibility of NaCS-PDADMAC biological microcapsules for Bacillus thuringiensis [J]. Journal of Chemical Industry and Engineering(China), 1999, 50(5): 592-597. | |
16 | Shi J , Zhang S , Wang X , et al . Preparation and enzymatic application of flower-like hybrid microcapsules through a biomimetic mineralization approach[J]. J. Mater. Chem. B, 2014, 2(27): 4289-4296. |
17 | Hasanzadeh M , Shahidi M , Kazemipour M . Application of EIS and EN techniques to investigate the self-healing ability of coatings based on microcapsules filled with linseed oil and CeO2 nanoparticles[J]. Prog. Org. Coat., 2015, 80: 106-119. |
18 | 饶林刚, 贾莉斯, 陈颖, 等 . 分散剂对相变纳米胶囊悬浮液稳定性的影响[J]. 广东化工, 2017, (9): 67-71. |
Rao L G , Jia L S , Chen Y , et al . Effect of dispersant on suspension stability of phase change nano-capsules[J]. Guangdong Chemical Industry, 2017, (9): 67-71. | |
19 | Goel M , Roy S K , Sengupta S . Laminar forced convection heat transfer in microcapsulated phase change material suspensions[J]. Int. J. Heat Mass Trans., 1994, 37(4): 593-604. |
20 | Chen B , Wang X , Zeng R , et al . An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux[J]. Exp. Therm. Fluid Sci., 2008, 32(8): 1638-1646. |
21 | Choi E , Cho Y I , Lorsch H G . Forced convection heat transfer with phase-change-material slurries: turbulent flow in a circular tube[J]. Int. J. Heat Mass Tran., 1994, 37(2): 207-215. |
22 | Charunyakorn P , Sengupta S , Roy S K . Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts[J]. Int. J. Heat Mass Tran., 1991, 34: 819–833. |
23 | Zhang Y , Faghri A . Analysis of forced convection heat transfer in microencapsulated phase change material suspensions[J]. J. Thermophys. Heat Tran., 1995, 9: 727–732. |
24 | Roy S K , Avanic B L . Laminar forced convection heat transfer with phase change material suspensions[J]. Int. Commun. Heat Mass Tran., 2001, 28: 895–904. |
25 | Hu X , Zhang Y . Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux[J]. Int. J. Heat Mass Tran., 2002, 45: 3163-3172. |
26 | Sabbah R , Seyed-Yagoobi J , Al-Hallaj S . Heat transfer characteristics of liquid flow with micro-encapsulated phase change material: numerical study[J]. J. Heat Tran., 2011, 133(12): 121702. |
27 | Zeng R L , Wang X , Chen B J , et al . Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux[J]. Appl. Energ., 2009, 86(12): 2661-2670. |
28 | 方玉堂, 万伟军 . 潜热型功能热流体的研究进展[J].材料导报, 2009, 23(8): 108. |
Fang Y T , Wan W J . Research progress of latent heat functional thermal fluids[J]. Materials Reports, 2009, 23(8): 108. | |
29 | Wang X , Niu J , Li Y , et al . Flow and heat transfer behaviors of phase change material slurries in a horizontal circular tube [J]. Int. J. Heat Mass Tran., 2007, 50(13/14): 2480-2491. |
30 | 刘丽, 王亮, 王艺斐, 等 . 基液为丙醇/水的相变微胶囊悬浮液的制备、稳定性及热物性[J]. 功能材料, 2014, 45(1): 109-113. |
Liu L , Wang L , Wang Y F , et al . Preparation, stability and thermophysical properties of propanol/water phase change microcapsule suspension[J]. Journal of Function Materials, 2014, 45(1): 109-113. | |
31 | Alquaity A B S , Al‐Dini S A , Yilbas B S . Investigation into thermal performance of nanosized phase change material (PCM) in microchannel flow[J]. Int. J. Numer. Method. H., 2013, 23(2): 233-247. |
32 | Morsi S A , Alexander A J . An investigation of particle trajectories in two-phase flow systems[J]. J. Fluid Mech., 2006, 55(2): 193-208. |
33 | 岑可法, 樊建人 . 工程气固多相流动的理论及计算[M]. 杭州: 浙江大学出版社, 1990. |
Cen K F , Fan J R . Theory and Calculation of Engineering Gas-Solid Multiphase Flow[M]. Hangzhou: Zhejiang University Press, 1990. | |
34 | Guyer E C , Brownell D L . Handbook of Applied Thermal Design [M]. New York: McGraw-Hill, 1998. |
35 | Ma Z W , Zhang P . Modeling the heat transfer characteristics of flow melting of phase change material slurries in the circular tubes[J]. Int. J. Heat Mass Tran., 2013, 64(Complete): 874-881. |
36 | Ho C J , Huang J B , Tsai P S , et al . Water-based suspensions of Al2O3, nanoparticles and MEPCM particles on convection effectiveness in a circular tube[J]. Int. J. Therm. Sci., 2011, 50(5): 736-748. |
37 | Ho C J , Lin J F , Chiu S Y . Heat transfer of solid–liquid phase-change material suspensions in circular pipes: effects of wall conduction[J]. Numer. Heat Tr. A-Appl., 2004, 45(2): 171-190. |
38 | Ma F , Zhang P , Shi X J . Flow and heat transfer characteristics of micro-encapsulated phase change material slurry and energy transport evaluation[J]. Energy Procedia, 2017, 105: 4607-4614. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[7] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[8] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[9] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[10] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[11] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[12] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[13] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[14] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[15] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||