化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1562-1569.DOI: 10.11949/0438-1157.20190980
涂爱民1,2,3,刘世杰1,2,3,莫逊1,2,3,朱冬生1,2,3,尹应德1,2,3
收稿日期:
2019-08-30
修回日期:
2020-01-21
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
刘世杰
作者简介:
涂爱民(1971—),男,博士,高级工程师,tuam@ms. giec. ac. cn
基金资助:
Aimin TU1,2,3,Shijie LIU1,2,3,Xun MO1,2,3,Dongsheng ZHU1,2,3,Yinde YIN1,2,3
Received:
2019-08-30
Revised:
2020-01-21
Online:
2020-04-05
Published:
2020-04-05
Contact:
Shijie LIU
摘要:
对将螺旋扭曲管用于燃机进气温度调节换热器进行可行性分析,模拟燃机进气加热器实际运行的工况条件进行综合传热性能实验研究,得到了传热与流阻准则关系式;引入综合评价因子概念并与传统钢铝翅片管换热器进行对比发现,螺旋扭曲管换热器是钢铝翅片管换热器的1.31~1.52倍。以某建设项目采用的E级PG9171E型机组为例,对采用螺旋扭曲管和钢铝翅片管的两种进气温度调节换热器进行对比发现:当采用螺旋扭曲管换热器时,在同样换热能力下,换热器风侧阻力增大了14.7%;在同等质量下,换热器换热能力提高9.9%左右。
中图分类号:
涂爱民, 刘世杰, 莫逊, 朱冬生, 尹应德. 螺旋扭曲管用于燃气轮机进气温度调节换热器的可行性研究[J]. 化工学报, 2020, 71(4): 1562-1569.
Aimin TU, Shijie LIU, Xun MO, Dongsheng ZHU, Yinde YIN. Feasibility study of spiral twisted tube for gas turbine inlet temperature regulating heat exchanger[J]. CIESC Journal, 2020, 71(4): 1562-1569.
管型 | 基管直径/mm | 元件外形特点/mm | 横向管间距/mm | 纵向管间距/mm | 单排管数/排数 |
---|---|---|---|---|---|
螺旋扭曲管 | 15.9×0.75×1270 | 长轴/短轴:20.0/8.7 | 20 | 25.0 | 20/8 |
钢铝翅片管 | ? 25.0×2.00×1270 | 片高/片距:16.0/2.5 | 62 | 53.7 | 10/4 |
表1 螺旋扭曲管换热器与钢铝翅片管换热器结构尺寸
Table 1 Structural dimensions of spiral twisted oval tube heat exchangers and steel and aluminum rolled finned tube heat exchangers
管型 | 基管直径/mm | 元件外形特点/mm | 横向管间距/mm | 纵向管间距/mm | 单排管数/排数 |
---|---|---|---|---|---|
螺旋扭曲管 | 15.9×0.75×1270 | 长轴/短轴:20.0/8.7 | 20 | 25.0 | 20/8 |
钢铝翅片管 | ? 25.0×2.00×1270 | 片高/片距:16.0/2.5 | 62 | 53.7 | 10/4 |
仪器 | 量程 | 精度 |
---|---|---|
温度计 | -20~120℃ | ±0.15℃ |
压差计 | 0~500 Pa | ±1.0 Pa |
皮托管风速计 | 0~500 Pa | ±1.0 Pa |
流量计 | 2.0~40.0 m3/h | ±0.2 m3/h |
Agilent 34970数据记录器 | — | — |
表2 测量仪器参数
Table 2 Parameters of measuring instrument
仪器 | 量程 | 精度 |
---|---|---|
温度计 | -20~120℃ | ±0.15℃ |
压差计 | 0~500 Pa | ±1.0 Pa |
皮托管风速计 | 0~500 Pa | ±1.0 Pa |
流量计 | 2.0~40.0 m3/h | ±0.2 m3/h |
Agilent 34970数据记录器 | — | — |
管内 | 管外侧 | ||
---|---|---|---|
介质 | 水 | 介质 | 热空气 |
流量/(t/h) | 42.9 | 流量/(kg/s) | 63.0 |
密度/(kg/m3) | 987.100 | 密度/(kg/m3) | 1.185 |
比热容/(J/(kg·℃)) | 4175 | 比热容/(J/(kg·℃)) | 1005 |
热导率/(W/(m·K)) | 0.650 | 热导率/(W/(m·K)) | 0.026 |
动力黏度/(Pa·s) | 5.34×10-4 | 动力黏度/(Pa·s) | 1.84×10-5 |
进口温度/℃ | 65 | 进口温度/℃ | 15 |
出口温度/℃ | 39.5 | 出口温度/℃ | 35.0 |
换热量/W | 1268678 | 换热量/W | 1266300 |
表3 进气加热器设计介质参数(单模块)
Table 3 Intake heater design media parameters(single module)
管内 | 管外侧 | ||
---|---|---|---|
介质 | 水 | 介质 | 热空气 |
流量/(t/h) | 42.9 | 流量/(kg/s) | 63.0 |
密度/(kg/m3) | 987.100 | 密度/(kg/m3) | 1.185 |
比热容/(J/(kg·℃)) | 4175 | 比热容/(J/(kg·℃)) | 1005 |
热导率/(W/(m·K)) | 0.650 | 热导率/(W/(m·K)) | 0.026 |
动力黏度/(Pa·s) | 5.34×10-4 | 动力黏度/(Pa·s) | 1.84×10-5 |
进口温度/℃ | 65 | 进口温度/℃ | 15 |
出口温度/℃ | 39.5 | 出口温度/℃ | 35.0 |
换热量/W | 1268678 | 换热量/W | 1266300 |
参数 | 翅片管换热器 | 螺旋扭曲管换热器 |
---|---|---|
管程数 | 2 | 1 |
管内流速/(m/s) | 0.53 | 0.26 |
管外流速/(m/s) | 5.75 | 8.63 |
总传热系数/(W/(㎡·K)) | 26.6 | 132.0 |
传热温差/℃ | 23.9 | 24.4 |
换热面积/ m2 | 91.6(基管)+1999.0(翅片) | 439.6 |
总换热能力/ W | 1327065 | 1415245 |
空气侧阻力/ Pa | 103 | 126 |
管规格/mm×mm | 25.0×2.00 | 15.9×0.75 |
单管长度/m | 10.0 | 10.0 |
单模块管根数 | 118 | 880 |
单模块总管长度/ m | 1180 | 8800 |
单模块外形尺寸/ mm×mm×mm | 10600×2240×850 | 10600×2240×850 |
单模块换热管质量/ kg | 2352(含翅片) | 2494 |
单模块总净重/ kg | ~5880 | ~5700 |
表4 两种换热器的设计计算参数对比(单模块)
Table 4 Comparison of design calculation parameters of two heat exchangers (single module)
参数 | 翅片管换热器 | 螺旋扭曲管换热器 |
---|---|---|
管程数 | 2 | 1 |
管内流速/(m/s) | 0.53 | 0.26 |
管外流速/(m/s) | 5.75 | 8.63 |
总传热系数/(W/(㎡·K)) | 26.6 | 132.0 |
传热温差/℃ | 23.9 | 24.4 |
换热面积/ m2 | 91.6(基管)+1999.0(翅片) | 439.6 |
总换热能力/ W | 1327065 | 1415245 |
空气侧阻力/ Pa | 103 | 126 |
管规格/mm×mm | 25.0×2.00 | 15.9×0.75 |
单管长度/m | 10.0 | 10.0 |
单模块管根数 | 118 | 880 |
单模块总管长度/ m | 1180 | 8800 |
单模块外形尺寸/ mm×mm×mm | 10600×2240×850 | 10600×2240×850 |
单模块换热管质量/ kg | 2352(含翅片) | 2494 |
单模块总净重/ kg | ~5880 | ~5700 |
1 | 俞立凡, 冯宜. 9F燃机进气加热系统的经济性和安全性初探[J]. 电力建设, 2008, 29(9): 42-45. |
Yu L F, Feng Y. Study on the economics and safety of 9F gas turbine inlet heating system[J]. Electric Power Construction, 2008, 29(9): 42-45. | |
2 | 卢伟明. GE 9FA 燃气轮机进气加热系统的控制[J]. 制冷空调与电力机械, 2008, 29(6): 91-94. |
Lu W M. Control of GE 9FA gas turbine intake heating system[J]. Refrigeration Air Conditioning & Electric Power Machinery, 2008, 29(6): 91-94. | |
3 | 马琴, 李伟, 常娜娜, 等. LM2500 + G4 型燃气-蒸汽联合循环机组余热加热天然气的技术经济分析[J]. 华电技术, 2018, 40(7): 59-63. |
Ma Q, Li W, Chang N N, et al. Technical and economic analysis of LM2500 + G4 gas-steam combined cycle unit with waste heat to heat natural gas [J]. Huadian Technology, 2018, 40(7): 59-63. | |
4 | 赵丽娟. 论 PG9351FA 燃气轮机的进气加热系统[J]. 燃气轮机技术, 2006, 19(4): 15-19. |
Zhao L J. On the intake heating system of PG9351FA gas turbine [J]. Gas Turbine Technology. 2006, 19(4): 15-19. | |
5 | 张凡, 李兆辉, 李晓宇, 等. 不同材料翅片管换热器特性的试验研究[J]. 西安交通大学学报, 2015, 49(5): 62-67. |
Zhang F, Li Z H, Li X Y, et al. Experimental study on performance of planar finned tube heat exchanger made of different materials[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 62-67. | |
6 | 张正国, 余昭胜, 方晓明, 等. 三维翅片管外螺旋流动传热强化[J]. 化工学报, 2006, 57(11): 2531-2535. |
Zhang Z G, Yu Z S, Fang X M, et al. Heat transfer enhancement for helical flowing outside three-dimensional fin tube [J]. Journal of Chemical Industry and Engineering(China), 2006, 57(11): 2531-2535. | |
7 | 唐俊. 9FA燃机进气加热系统的作用和制造特点[J]. 水利水电施工, 2016, 157(4): 37-38+53. |
Tang J. The function and manufacturing characteristics of 9FA gas turbine intake heating system[J]. Water Resources and Hydropower Engineering, 2016, 157(4): 37-38+53. | |
8 | 周晟. 9F燃机进气加热系统分析[J]. 光机电, 2016, 10(6): 100. |
Zhou S. Analysis of 9F gas turbine intake heating system[J]. Opto-Electronics, 2016, 10(6): 100. | |
9 | 赵宇, 王勤韧, 陈江平, 等. 电化学腐蚀对翅片管换热器性能的影响[J]. 化工学报, 2010, 61(1): 22-26. |
Zhao Y, Wang Q R, Chen J P, et al. Effect of electrochemical corrosion on performance of tube-fin heat exchanger [J]. CIESC Journal, 2010, 61(1): 22-26. | |
10 | 丁淇德. 进气加热器对燃气_蒸汽联合循环的影响[D]. 北京: 华北电力大学, 2015. |
Ding Q D. Effect of intake heater on gas-steam combined cycle[D]. Beijing: North China Electric Power University, 2015. | |
11 | Al-Hadhrami L M, Ahmad A, Al-Qahtani A. Performance analysis of heat exchangers of an existing naphtha hydrotreating plant: a case study[J]. Applied Thermal Engineering, 2010, 30(8/9): 1029-1033. |
12 | Al-Hadhrami L M, Al-Qahtani A. Experimental study of fouling resistance in twisted tube heat exchanger[J]. Heat Transfer Engineering, 2012, 33(12): 1024-1032. |
13 | Thawkar V P, Farkade H S. Experimental and CFD analysis of twisted tube heat exchanger under forced convection[J]. International Journal of Science and Research, 2013, 4(5): 137-142. |
14 | Sheng Y, Li Z, Hong X. Experimental study on convective heat transfer and flow resistance characteristics of water flow in twisted elliptical tubes [J]. Applied Thermal Engineering, 2011, 31: 2981-2991. |
15 | 谭祥辉, 孙赫, 张立振, 等. 扭曲椭圆管换热的壳程强化传热特性[J]. 化工学报, 2012, 63(3): 713-730. |
Tan X H, Sun H, Zhang L Z, et al. Shell-side enhanced heat transfer characteristics of heat exchangers with twisted elliptical tubes[J]. CIESC Journal, 2012, 63(3): 713-730. | |
16 | 刘世杰, 朱冬生, 张洁娜, 等. 三维变形管 MVR 蒸发器的强化传热数值研究[J]. 高校化学工程学报, 2018, 32(6): 1307-1313. |
Liu S J, Zhu D S, Zhang J N, et al. Numerical study on heat transfer enhancement of MVR evaporator with 3D-deformation tube[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(6): 1307-1313. | |
17 | 朱冬生, 李修真, 孙晋飞, 等. 三维变形管与三维内肋管在管式空气预热器上的应用研究[J]. 热能动力工程, 2018, 33(4): 139-144 |
Zhu D S, Li X Z, Sun J F, et al. Study of the application of three-dimensional deformed tubes and three-dimensional internally ribbed tubes in tubular air preheaters[J]. Journal of Engineering for Thermal Energy and Power, 2018, 33(4): 139-144. | |
18 | 莫逊, 朱冬生, 林城迪. 三维管烟气换热器传热特性的实验及模拟研究[J]. 过程工程学报, 2018, 18(1): 41-48. |
Mo X, Zhu D S, Lin C D. Experimental and simulation study on heat transfer characteristics of three-dimensional tube flue gas heat exchanger[J]. Chinese Journal of Process Engineering, 2018, 18(1): 41-48. | |
19 | Cheng J L, Qian Z Q, Wang Q. Analysis of heat transfer and flow resistance of twisted oval tube in low Reynolds number flow [J]. International Journal of Heat and Mass Transfer, 2017, 109: 761-777. |
20 | 朱冬生, 安冬旭, 李霞, 等. 高效复合强化换热器的管程性能[J]. 化工学报, 2014, 65(2): 453-459. |
Zhu D S, An D X, Li X, et al. Tube side performance of new efficient composite enhanced heat exchanger[J]. CIESC Journal, 2014, 65(2): 453-459. | |
21 | 刘庆亮, 朱冬生, 杨蕾. 螺旋扭曲扁管换热器的研究进展与工业应用[J]. 流体机械, 2010, 38(3): 37-42. |
Liu Q L, Zhu D S, Yang L. Research progress and industrial application of spiral twisted flat tube heat exchanger[J]. Fluid Machinery, 2010, 38(3): 37-42. | |
22 | 杨旭. 扭曲管换热器的传热强化及其机械性能研究 [D]. 北京: 北京化工大学, 2014. |
Yang X. Heat transfer enhancement and mechanical properties of twisted tube heat exchangers [D]. Beijing: Beijing University of Chemical Technology, 2014. | |
23 | Li X Z, Zhu D S, Yin Y D, et al. Experimental study on heat transfer and pressure drop of twisted oval tube bundle in cross flow [J]. Experimental Thermal and Fluid Science, 2018, 99: 251-258. |
24 | Li X Z, Zhu D S, Yin Y D, et al. Parametric study on heat transfer and pressure drop of twisted oval tube bundle with in line layout [J]. International Journal of Heat and Mass Transfer, 2019, 135: 860-872. |
25 | Li X Z, Zhu D S, Yin Y D, et al. Heat transfer and pressure drop for twisted oval tube bundles with staggered layout in crossflow of air [J]. Applied Thermal Engineering, 2019, 148: 1092-1098. |
26 | Gu H F, Chen Q, Wang H J, et al. A study of shell side condensation of a hydrocarbon in the presence of no condensable gas on twisted elliptical tubes[J]. Journal of Thermal Science and Engineering Applications, 2016, 8(4): 7. |
27 | Tan X H, Zhu D S, Zhou G Y, et al. Experimental and numerical study of convective heat transfer and fluid flow in twisted oval tubes[J]. International Journal of Heat and Mass Transfer, 2012, 55(17/18): 4701-4710. |
28 | 上海江湾化工机械厂, 上海机械学院. 双金属轧片式翅片管换热器[J]. 石油化工设备技术, 1989, 10(3): 37-40. |
Shanghai Jiangwan Chemical Machinery Factory, Shanghai Mechanical College. Double-metal rolled finned tube heat exchanger[J]. Petro-chemical Equipment Technology, 1989, 10(3): 37-40. | |
29 | 张贤安. 双金属轧片式翅片管管外对流换热准则关系式研究[J]. 流体机械, 2004, 32(7): 19-22. |
Zhang X A. Research on convective heat transfer empirical formula for the outside of double metal rolling fin tubes[J]. Fluid Machinery, 2004, 32(7): 19-22. | |
30 | 孙茜, 欧阳新萍. 椭圆钎焊与双金属轧制翅片管传热与阻力性能的试验对比[J]. 热能动力工程, 2017, 32(8): 5-10. |
Sun X, Ouyang X P. Experimental comparison on the heat transfer performance and resistance characteristics of elliptical soldered fined tube and bimetal rolled finned tube[J]. Journal of Engineering for Thermal Energy and Power, 2017, 32(8): 5-10. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[4] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[5] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[6] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[7] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[8] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[9] | 康飞, 吕伟光, 巨锋, 孙峙. 废锂离子电池放电路径与评价研究[J]. 化工学报, 2023, 74(9): 3903-3911. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[12] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[13] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[14] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[15] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||