化工学报 ›› 2020, Vol. 71 ›› Issue (2): 575-583.DOI: 10.11949/j.issn.0438-1157.20190568
收稿日期:
2019-05-27
修回日期:
2019-09-18
出版日期:
2020-02-05
发布日期:
2020-02-05
通讯作者:
周昊
作者简介:
刘丹(1992—),女,博士研究生, 基金资助:
Dan LIU(),Yi CHENG,Mingyue HU,Qianyun SHENG,Hao ZHOU(
)
Received:
2019-05-27
Revised:
2019-09-18
Online:
2020-02-05
Published:
2020-02-05
Contact:
Hao ZHOU
摘要:
换热器烟气侧自身结构参数和外界条件是影响换热器换热及阻力特性的主要因素,采用数值模拟和实验方法研究了翅片螺距及烟气含水量对齿形螺旋翅片管束换热及阻力特性的影响。结果表明,在翅片螺距3.63~8.47 mm范围内,烟气侧 Nu随着翅片螺距的增大而增大,在不同入口烟温下,相对于3.63 mm翅片管,5.08 mm和8.47 mm翅片管 Nu分别增大3%~6%和9%~14%, Eu随着翅片螺距的增大而减小,相对于3.63 mm翅片管,5.08 mm和8.47 mm翅片管 Eu分别减小30%和50%左右;烟气含水量的适当增大,有利于提高齿形翅片管束的换热及阻力特性。
中图分类号:
刘丹, 成毅, 胡明月, 盛倩云, 周昊. 湿烟气工况下齿形螺旋翅片管束的性能研究[J]. 化工学报, 2020, 71(2): 575-583.
Dan LIU, Yi CHENG, Mingyue HU, Qianyun SHENG, Hao ZHOU. Study on performance of serrated spiral finned tube banks under wet flue gas condition[J]. CIESC Journal, 2020, 71(2): 575-583.
No. | do/mm | di/mm | hf/mm | δf/mm | pf/mm | hs/mm | ws/mm |
---|---|---|---|---|---|---|---|
1 | 38 | 32 | 15.9 | 1 | 8.47 | 10.9 | 4 |
2 | 38 | 32 | 15.9 | 1 | 5.08 | 10.9 | 4 |
3 | 38 | 32 | 15.9 | 1 | 3.63 | 10.9 | 4 |
表1 翅片管束几何参数
Table 1 Structural parameters of serrated spiral finned tube
No. | do/mm | di/mm | hf/mm | δf/mm | pf/mm | hs/mm | ws/mm |
---|---|---|---|---|---|---|---|
1 | 38 | 32 | 15.9 | 1 | 8.47 | 10.9 | 4 |
2 | 38 | 32 | 15.9 | 1 | 5.08 | 10.9 | 4 |
3 | 38 | 32 | 15.9 | 1 | 3.63 | 10.9 | 4 |
1 | Pongsoi P, Pikulkajorn S, Wongwises S. Heat transfer and flow characteristics of spiral fin-and-tube heat exchangers: a review[J]. International Journal of Heat and Mass Transfer, 2014, 79: 417- 431. |
2 | 马有福, 袁益超, 刘聿拯, 等. 横向节距对锯齿螺旋翅片换热管特性影响的实验研究[J]. 中国电机工程学报, 2011, 31( 8): 67- 72. |
Ma Y F, Yuan Y C, Liu Y Z, et al. Experimental studies on the effects of transverse pitch on heat transfer and flow resistance characteristics of serrated spiral finned tube banks[J]. Proceedings of the CSEE, 2001, 31( 8): 67- 72. | |
3 | 陆炳生, 叶文彪, 刘复田. 螺旋翅片管省煤器的应用[J]. 华东电力, 2004, 32( 11): 55- 57. |
Lu B S, Ye W B, Liu F T. Application of spiral finned tube economizer[J]. East China Electric Power, 2004, 32( 11): 55- 57. | |
4 | Lemouedda A, Schmid A, Franz E, et al. Numerical investigations for the optimization of serrated finned-tube heat exchangers[J]. Applied Thermal Engineering, 2011, 31( 8): 1393- 1401. |
5 | Wongwises S, Chokeman Y. Effect of fin pitch and number of tube rows on the air side performance of herringbone wavy fin and tube heat exchangers[J]. Energy Conversion and Management, 2005, 46( 13/14): 2216- 2231. |
6 | Mon M S, Gross U. Numerical study of fin-spacing effects in annular-finned tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2004, 47( 8/9): 1953- 1964. |
7 | Pongsoi P, Promoppatum P, Pikulkajorn S, et al. Effect of fin pitches on the air-side performance of L-footed spiral fin-and-tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2013, 59: 75- 82. |
8 | Pongsoi P, Pikulkajorn S, Wongwises S. Effect of fin pitches on the optimum heat transfer performance of crimped spiral fin-and-tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2012, 55: 6555- 6566. |
9 | 何法江, 曹伟武, 匡江红, 等. 螺旋翅片管束传热和阻力特性的试验研究[J]. 动力工程学报, 2009, 29( 5): 460- 464. |
He F J, Cao W W, Kuang J H, et al. Heat transfer and resistance characteristics of spiral finned tube bundles[J]. Journal of Power Engineering, 2009, 29( 5): 460- 464. | |
10 | 王耀昕. 螺旋翅片管式余热锅炉烟气阻力计算方法比较[J]. 节能技术, 2016, 34( 4): 310- 313. |
Wang Y X. Comparison of calculation method of flue gas resistance of spiral finned tube in the heat recovery steam generator[J]. Energy Conservation Technology, 2016, 34( 4): 310- 313. | |
11 | 马有福, 袁益超, 王治云. 锯齿螺旋翅片管束传热与阻力特性的研究进展[J]. 动力工程学报, 2010, 30( 11): 849- 854. |
Ma Y F, Yuan Y C, Wang Z Y. Developing progress on heat transfer and resistance characteristics of the serrated helically finned tube banks[J]. Journal of Chinese Society of Power Engineering, 2010, 30( 11): 849- 854. | |
12 | Hofmann R, Frasz F, Ponweiser K. Experimental analysis of enhanced heat transfer and pressure-drop of serrated finned-tube bundles with different fin geometries[C]//Krope J, Sohrab S H, Benra I F K. Proceedings of the 5th WSEAS International Conference on Heat and Mass Transfer. Acapulco, Mexico: Mathematics and Computers in Science and Engineering, 2008: 54- 62. |
13 | 裴育烽, 马南稻, 刘宏伟. 锯齿螺旋翅片管束换热和阻力特性关联式的比较[J]. 热能动力工程, 2014, 29( 6): 651- 656. |
Pei Y F, Ma N D, Liu H W. Comparison of the correlation formulae for calculating the heat exchange and resistance characteristics of serrated spirally-finned tube bundles[J]. Journal of Engineering for Thermal Energy and Power, 2014, 29( 6): 651- 656. | |
14 | Kawaguchi K, Okui K, Kashi T. Heat transfer and pressure drop characteristics of finned tube banks in forced ,convection (comparison of heat transfer and pressure drop characteristics of serrated and spiral fins) [J]. Journal of Enhanced Heat Transfer, 2005, 12( 1): 1- 20. |
15 | 马有福. 齿形螺旋翅片管束强化换热特性研究[D]. 上海: 上海理工大学, 2012. |
Ma Y F. Investigation on the heat transfer enhancement of serrated fin tube banks[D]. Shanghai: University of Shanghai for Science and Technology, 2012. | |
16 | 曹雅文, 袁益超, 徐昱. 管间距对折齿型螺旋翅片管束性能影响的数值模拟及试验研究[J]. 工业锅炉, 2013, ( 4): 1- 5. |
Cao Y W, Yuan Y C, Xu Y. Numerical simulation and experimental study on the effects of tube pitch on heat transfer and resistance characteristics of twisted-segmented-finned tube banks[J]. Industrial Boiler, 2013, ( 4): 1- 5. | |
17 | Næss E. Experimental investigation of heat transfer and pressure drop in serrated-fin tube bundles with staggered tube layouts[J]. Applied Thermal Engineering, 2010, 30( 13): 1531- 1537. |
18 | 郭亮, 柯道友. 中等雷诺数下高水分烟气横流圆管对流换热实验研究[J]. 工程热物理学报, 2001, 22: 93- 96. |
Guo L, Ke D Y. Experimental study of high moisture content gas crossflow over a cylinder at moderate Reynolds numbers[J]. Journal of Engineering Thermophysics, 2001, 22: 93- 96. | |
19 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1( 1): 3- 17. |
20 | Weierman C. Correlations ease the selection of fin tubes[J]. Oil and Gas Journal, 1976, 74( 6): 94- 100. |
21 | 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 115- 126. |
Wang F J. Computational Fluid Dynamics Analysis: Principles and Applications of CFD Software [M]. Beijing: Tsinghua University Press, 2004: 115- 126. | |
22 | 许圣华. 烟气物性的直接计算方法[J]. 苏州丝绸工学院学报, 1999, 19( 3): 32- 36. |
Xu S H. Direct calculation of flue gas properties[J]. Journal of Suzhou Institute of Silk Textile Technology, 1999, 19( 3): 32- 36. | |
23 | 杨世铭, 陶文铨. 传热学 [M]. 4版 . 北京: 高等教育出版社, 2006: 260. |
Yang S M, Tao W Q. Heat Transfer [M]. 4th ed. Beijing: Higher Education Press, 2006: 260. | |
24 | Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flow[J]. International Chemical Engineering, 1976, 16( 2): 359- 368. |
25 | Zukauskas A A. 换热器内的对流传热[M]. 马昌文, 居滋象, 肖宏才, 译. 北京: 科学出版社, 1986: 337- 370. |
Zukauskas A A. Convective Heat Transfer in Heat Exchangers[M]. Ma C W, Ju Z X, Xiao H C, trans. Beijing: Science Press, 1986: 337- 370. | |
26 | Lee M, Kang T, Kim Y. Air-side heat transfer characteristics of spiral-type circular fin-tube heat exchangers[J]. International Journal of Refrigeration, 2010, 33( 2): 313- 320. |
27 | 卓宁, 孙家庆. 工程对流换热[M]. 北京: 机械工业出版社, 1982: 90. |
Zhuo N, Sun J Q. Engineering Convection Heat Transfer[M]. Beijing: China Machine Press, 1982: 90. | |
28 | 冯俊凯, 沈幼庭. 锅炉原理及计算[M]. 2版 . 北京: 科学出版社, 1998: 575- 584. |
Feng J K, Shen Y T. Principle and Calculation of Boiler [M]. 2nd ed. Beijing: Science Press, 1998: 575- 584. | |
29 | 黄祖毅. 废弃物锅炉错列管束的流动阻力特性[J]. 锅炉技术, 2003, 34( 1): 72- 75. |
Huang Z Y. Characteristics of fluid resistance of the crossing staggered tube bundles of the MSW boiler[J]. Boiler Technology, 2003, 34( 1): 72- 75. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[4] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[5] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[6] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[7] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[8] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[9] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[10] | 刘明栖, 吴延鹏. 导光管直径和长度对传热影响的模拟分析[J]. 化工学报, 2023, 74(S1): 206-212. |
[11] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[12] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[13] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[14] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[15] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 476
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 490
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||