化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2481-2491.DOI: 10.11949/0438-1157.20200129
收稿日期:
2020-02-11
修回日期:
2020-03-29
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
吕瑞涛
作者简介:
郑沐云(1997—),男,博士研究生,基金资助:
Muyun ZHENG(),Yuchi WAN,Ruitao LYU()
Received:
2020-02-11
Revised:
2020-03-29
Online:
2020-06-05
Published:
2020-06-05
Contact:
Ruitao LYU
摘要:
氨是纺织、制药、化肥等领域重要的化工原料,也是一种清洁的能源载体,需求量大。目前氨的工业生产主要为Haber-Bosch法,反应条件严苛,能源消耗大且碳排放较高。电催化氮气还原(NRR)合成氨是一种在常温常压下进行的反应,工作电位低,且电能可通过清洁能源提供,是一种很有潜力的合成氨新工艺。但目前电催化NRR材料的产氨速率和法拉第效率低、工作稳定性不够高、溶液中痕量氨的定量检测困难及检测标准不统一等都为其发展带来了巨大挑战。本文首先介绍了电催化NRR的反应机理和常用研究方法,然后重点梳理了2019年以来NRR催化材料的最新研究进展,最后对该领域研究面临的挑战和机遇进行了展望。
中图分类号:
郑沐云, 万宇驰, 吕瑞涛. 电催化氮气还原合成氨催化材料研究进展[J]. 化工学报, 2020, 71(6): 2481-2491.
Muyun ZHENG, Yuchi WAN, Ruitao LYU. Research progress on electrocatalytic nitrogen reduction reaction catalysts for ammonia synthesis[J]. CIESC Journal, 2020, 71(6): 2481-2491.
9 | Tang C, Qiao S. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully[J]. Chemical Society Reviews, 2019, 48: 3166-3180. |
10 | Zhao S, Lu X, Wang L, et al. Carbon-based metal-free catalysts for electrocatalytic rreduction of nitrogen for synthesis of ammonia at ambient conditions[J]. Advanced Materials, 2019, 31: 1805367. |
11 | Cui X, Tang C, Zhang Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions[J]. Advanced Energy Materials, 2018, 8: 1800369. |
12 | Hu L, Xing Z, Feng X. Understanding the electrocatalytic interface for ambient ammonia synthesis[J]. ACS Energy Letters, 2020, 5(2): 430-436. |
13 | Chen T, Liu S, Ying H, et al. Reactive ionic liquid enables the construction of 3D Rh particles with nanowire subunits for electrocatalytic nitrogen reduction[J]. Chemistry—an Asian Journal, 2020, 15: 1-8. |
14 | Hao Y, Guo Y, Chen L, et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water[J]. Nature Catalysis, 2019, 2: 448-456. |
15 | Zhang G, Ji Q, Zhang K, et al. Triggering surface oxygen vacancies on atomic layered molybdenum dioxide for a low energy consumption path toward nitrogen fixation[J]. Nano Energy, 2019, 59: 10-16. |
16 | Hu L, Khaniya A, Wang J, et al. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst[J]. ACS Catalysis, 2018, 8(10): 9312-9319. |
17 | Andersen S Z, Čolić V, Yang S, et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements[J]. Nature, 2019, 570: 504-508. |
18 | Thomas D H, Rey M, Jackson P E. Determination of inorganic cations and ammonium in environmental waters by ion chromatography with a high-capacity cation-exchange column[J]. Journal of Chromatography A, 2002, 956: 181–186. |
19 | Li L, Tang C, Yao D, et al. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte[J]. ACS Energy Letters, 2019, 4(9): 2111-2116. |
20 | Yang M, Huo R, Shen H, et al. Metal-tuned W18O49 for efficient electrocatalytic N2 reduction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2957-2963. |
1 | Geological Survey U.S.. Mineral Commodity Summaries 2019[R]. Mineral Commodity Summaries. Reston, VA: U.S. Geological Survey, 2019: 200. |
2 | van der Ham C J, Koper M T, Hetterscheid D G. Challenges in reduction of dinitrogen by proton and electron transfer[J]. Chemical Society Reviews, 2014, 43(15): 5183-5191. |
21 | Kordali V, Kyriacou G, Lambrou C. Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell[J]. Chemical Communications, 2000, 17: 1673-1674. |
22 | Tao H, Choi C, Ding L, et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction[J]. Chem, 2019, 5(1): 204-214. |
23 | Geng Z, Liu Y, Kong X, et al. Achieving a record‐high yield rate of 120.9 μgNH3·mgcat.-1·h-1 for N2 electrochemical reduction over Ru single‐atom catalysts[J]. Advanced Materials, 2018, 30(40): 1803498. |
24 | Su J, Zhao H, Fu W, et al. Fine rhodium phosphides nanoparticles embedded in N, P dual-doped carbon film: new efficient electrocatalysts for ambient nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 265: 118589. |
25 | Lv J, Wu S, Tian Z, et al. Construction of PdO-Pd interfaces assisted by laser irradiation for enhanced electrocatalytic N2 reduction reaction[J]. Journal of Materials Chemistry A, 2019, 7: 12627. |
26 | Ma M, Han X, Li H, et al. Tuning electronic structure of PdZn nanocatalyst via acid-etching strategy for highly selective and stable electrolytic nitrogen fixation under ambient conditions[J]. Applied Catalysis B: Environmental, 2020, 265: 118568. |
3 | Licht S, Cui B C, Wang B, et al. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3[J]. Science, 2014, 345(6197): 637-640. |
4 | Cui X, Tang C, Liu X M, et al. Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts[J]. Chemistry A European Journal, 2018, 24(69): 18494-18501. |
5 | Li M, Huang H, Low J, et al. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction[J]. Small Methods, 2019, 3: 1800388. |
6 | Zhang S, Zhao Y, Shi R, et al. Photocatalytic ammonia synthesis: recent progress and future[J]. EnergyChem, 2019, 1: 100013. |
7 | Wan Y, Xu J, Lv R. Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions[J]. Materials Today, 2019, 27: 69-90. |
8 | Zhao Y, Shi R, Bian X, et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates?[J]. Advanced Science, 2019, 6: 1802109. |
27 | Liu D, Zhang G, Ji Q, et al. Synergistic electrocatalytic nitrogen reduction enabled by confinement of nanosized Au particles onto a two-dimensional Ti3C2 substrate [J]. ACS Applied Materials & Interfaces, 2019, 11: 25758-25765. |
28 | Zhao X, Yao C, Chen H, et al. In situ nano Au triggered by a metal boron organic polymer: efficient electrochemical N2 fixation to NH3 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7: 20945. |
29 | Xue Z, Zhang S, Lin Y, et al. Electrochemical reduction of N2 into NH3 by donor-acceptor couples of Ni and Au nanoparticles with a 67.8% Faradaic efficiency[J]. Journal of the American Chemical Society, 2019, 141: 14976-14980. |
30 | Wan J, Chen W, Jia C, et al. Defect effects on TiO2 nanosheets: stabilizing single atomic site Au and promoting catalytic properties[J]. Advanced Materials, 2018, 30: 1705369. |
31 | Wang H, Yu H, Wang Z, et al. Electrochemical fabrication of porous Au film on Ni foam for nitrogen reduction to ammonia[J]. Small, 2019, 15: 1804769. |
32 | Zhang J, Ji Y, Wang P, et al. Adsorbing and activating N2 on heterogeneous Au–Fe3O4 nanoparticles for N2 fixation[J]. Advanced Functional Materials, 2020, 30: 1906579. |
33 | Lan R, Irvine J T, Tao S. Synthesis of ammonia directly from air and water at ambient temperature and pressure[J]. Scientific Reports, 2013, 3: 1145. |
34 | Li T, Yan X, Huang L, et al. Fluorine-free Ti3C2Tx (T = O, OH) nanosheets (~50-100 nm) for nitrogen fixation under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7: 14462. |
35 | Yi S, Liu G, Liu Z, et al. Theoretical insights into nitrogen fixation on Ti2C and Ti2CO2 in a lithium–nitrogen battery[J]. Journal of Materials Chemistry A, 2019, 7: 19950. |
36 | Yu G, Guo H, Kong W, et al. Electrospun TiC/C nanofibers for ambient electrocatalytic N2 reduction[J]. Journal of Materials Chemistry A, 2019, 7: 19657. |
37 | Cao N, Chen Z, Zang K, et al. Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation[J]. Nature Communications, 2019, 10: 2877. |
38 | Fang C, Bi T, Xu X, et al. Oxygen vacancy-enhanced electrocatalytic performances of TiO2 nanosheets toward N2 reduction reaction[J]. Advanced Materials Interfaces, 2019, 6: 1901034. |
39 | Cheng S, Gao Y, Yan Y, et al. Oxygen vacancy enhancing mechanism of nitrogen reduction reaction property in Ru/TiO2[J]. Journal of Energy Chemistry, 2019, 39: 144-151. |
40 | Han Z, Choi C, Hong S, et al. Activated TiO2 with tuned vacancy for efficient electrochemical nitrogen reduction[J]. Applied Catalysis B: Environmental, 2019, 257: 117896. |
41 | Kong W, Gong F, Zhou Q, et al. An MnO2-Ti3C2Tx MXene nanohybrid: an efficient and durable electrocatalyst toward artificial N2 fixation to NH3 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7: 18823. |
42 | Feng J, Zhu X, Chen Q, et al. Ultrasmall V8C7 nanoparticles embedded in conductive carbon for efficient electrocatalytic N2 reduction toward ambient NH3 production[J]. Journal of Materials Chemistry A, 2019, 7: 26227. |
43 | Chang B, Deng L, Wang S, et al. A vanadium–nickel oxynitride layer for enhanced electrocatalytic nitrogen fixation in neutral media[J]. Journal of Materials Chemistry A, 2020, 8: 91-96. |
44 | Sekiguchi Y, Arashiba K, Tanaka H, et al. Catalytic reduction of molecular dinitrogen to ammonia and hydrazine using vanadium complexes[J]. Angewandte Chemie International Edition, 2018, 57: 9064–9068. |
45 | Nash J, Yang X, Anibal J, et al. Elucidation of the active phase and deactivation mechanisms of chromium nitride in the electrochemical nitrogen reduction reaction[J]. The Journal of Physical Chemistry C, 2019, 123(39): 23967-23975. |
46 | Riyaz M, Goel N. Single‐atom catalysis using chromium embedded in divacant graphene for conversion of dinitrogen to ammonia[J]. ChemPhysChem, 2019, 20: 1954–1959. |
47 | Xie H, Wang H, Geng Q, et al. Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions[J]. Inorganic Chemistry, 2019, 58(9): 5423-5427. |
48 | Chu K, Liu Y, Li Y, et al. Multi-functional Mo-doping in MnO2 nanoflowers toward efficient and robust electrocatalytic nitrogen fixation[J]. Applied Catalysis B: Environmental, 2020, 264: 118525. |
49 | Ma D, Zeng Z, Liu L, et al. Computational evaluation of electrocatalytic nitrogen reduction on TM single-, double-, and triple-atom catalysts (TM = Mn, Fe, Co, Ni) based on graphdiyne monolayers[J]. The Journal of Physical Chemistry C, 2019, 123(31): 19066-19076. |
50 | Xiong W, Guo Z, Zhao S, et al. Facile, cost-effective plasma synthesis of selfsupportive FeSx on Fe foam for efficient electrochemical reduction of N2 under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7: 19977. |
51 | Lv F, Zhao S, Guo R, et al. Nitrogen-coordinated single Fe sites for efficient electrocatalytic N2 fixation in neutral media[J]. Nano Energy, 2019, 61: 420-427. |
52 | Guo Y, Yao Z, Timmer B J J, et al. Boosting nitrogen reduction reaction by bio-inspired FeMoS containing hybrid electrocatalyst over a wide pH range[J]. Nano Energy, 2019, 62: 282-288. |
53 | Guo C, Liu X, Gao L, et al. Fe-doped Ni2P nanosheets with porous structure for electroreduction of nitrogen to ammonia under ambient conditions[J]. Applied Catalysis B: Environmental, 2020, 263: 118296. |
54 | He C, Wu Z, Zhao L, et al. Identification of FeN4 as an efficient active site for electrochemical N2 reduction[J]. ACS Catalysis, 2019, 9: 7311-7317. |
55 | Liu Y, Xu Q, Fan X, et al. Electrochemical reduction of N2 to ammonia on Co single atom embedded N-doped porous carbon under ambient conditions[J]. Journal of Materials Chemistry A, 2019, 7: 26358. |
56 | Chu K, Liu Y, Li Y, et al. Efficient electrocatalytic N2 reduction on CoO quantum dots[J]. Journal of Materials Chemistry A, 2019, 7: 4389. |
57 | Wu X, Wang Z, Han Y, et al. Chemically coupled NiCoS/C nanocages as efficient electrocatalysts for nitrogen reduction reactions[J]. Journal of Materials Chemistry A, 2020, 8: 543. |
58 | Arifa M, Yasina G, Luo L, et al. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia[J]. Applied Catalysis B: Environmental, 2020, 265: 118559. |
59 | Yuan M, Zhang H, Gao D, et al. Support effect boosting electrocatalytic N2 reduction activity of Ni2P/N,P-codoped carbon nanosheet hybrids[J]. Journal of Materials Chemistry A, 2020, 8: 2691-2700. |
60 | Han J, Liu Z, Ma Y, et al. Ambient N2 fixation to NH3 at ambient conditions: using Nb2O5 nanofiber as a high-performance electrocatalyst[J]. Nano Energy, 2018, 52: 264-270. |
61 | Chu K, Liu Y, Li Y, et al. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7081-7090. |
62 | Zhang J, Tian X, Liu M, et al. Cobalt-modulated molybdenum–dinitrogen interaction in MoS2 for catalyzing ammonia synthesis[J]. Journal of the American Chemical Society, 2019, 141(49): 19269-19275. |
63 | Qin B, Li Y, Zhang Q, et al. Understanding of nitrogen fixation electro catalyzed by molybdenum–iron carbide through the experiment and theory[J]. Nano Energy, 2020, 68: 104374. |
64 | Yang X, Ling F, Su J, et al. Insights into the role of cation vacancy for significantly enhanced electrochemical nitrogen reduction[J]. Applied Catalysis B: Environmental, 2020, 264: 118477. |
65 | Huang B, Li N, Ong W, et al. Single atom-supported MXene: how single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation[J]. Journal of Materials Chemistry A, 2019, 7: 27620-27631. |
66 | Huang Y, Yang T, Yang L, et al. Graphene–boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 2019, 7: 15173-15180. |
67 | Yang T, Song T T, Zhou J, et al. High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation[J]. Nano Energy, 2020, 68: 104304. |
68 | Hui L, Xue Y, Yu H, et al. Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst[J]. Journal of the American Chemical Society, 2019, 141(27): 10677-10683. |
69 | Li Y, Zhang Q, Li C, et al. Atomically dispersed metal dimer species with selective catalytic activity for nitrogen electrochemical reduction[J]. Journal of Materials Chemistry A, 2019, 7: 22242-22247. |
70 | Sun Z, Huo R, Choi C, et al. Oxygen vacancy enables electrochemical N2 fixation over WO3 with tailored structure[J]. Nano Energy, 2019, 62: 869-875. |
71 | Yao X, Chen Z, Wang Y, et al. Activated basal planes of WS2 by intrinsic defects as catalysts for the electrocatalytic nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 2019, 7: 25961-25968. |
72 | Jin H, Li L, Liu X, et al. Nitrogen vacancies on 2D layered W2N3: a stable and efficient active site for nitrogen reduction reaction[J]. Advanced Materials, 2019, 31: 1902709. |
73 | Li L, Tang C, Xia B, et al. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction[J]. ACS Catalysis, 2019, 9(4): 2902-2908. |
74 | Li P, Fu W, Zhuang P, et al. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation[J]. Small, 2019, 15: 1902535. |
75 | Chu K, Liu Y, Li Y, et al. Electronically coupled SnO2 quantum dots and graphene for efficient nitrogen reduction reaction[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31806-31815. |
76 | Zhang X, Wu T, Wang H, et al. Boron nanosheet: an elemental two-dimensional (2D) material for ambient electrocatalytic N2‑to-NH3 fixation in neutral media[J]. ACS Catalysis, 2019, 9: 4609-4615. |
77 | Chen C, Yan D, Wang Y, et al. B-N pairs enriched defective carbon nanosheets for ammonia synthesis with high efficiency[J]. Small, 2019, 15: 1805029. |
78 | Yang X, Li K, Cheng D, et al. Nitrogen-doped porous carbon: highly efficient trifunctional electrocatalyst for oxygen reversible catalysis and nitrogen reduction reaction[J]. Journal of Materials Chemistry A, 2018, 6(17): 7762-7769. |
79 | Ren J, Wan C, Pei T, et al. Promotion of electrocatalytic nitrogen reduction reaction on N-doped porous carbon with secondary heteroatoms[J]. Applied Catalysis B: Environmental, 2020, 266: 118633. |
80 | Yu J, Li J, Zhu X, et al. Structured polyaniline: an efficient and durable electrocatalyst for the nitrogen reduction reaction in acidic media[J]. ChemElectroChem, 2019, 6: 2215-2218. |
[1] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[4] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[7] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[12] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[13] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[14] | 屈园浩, 邓文义, 谢晓丹, 苏亚欣. 活性炭/石墨辅助污泥电渗脱水研究[J]. 化工学报, 2023, 74(7): 3038-3050. |
[15] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||