化工学报 ›› 2020, Vol. 71 ›› Issue (8): 3761-3769.DOI: 10.11949/0438-1157.20191523
王东玲1,2,3(),王文锦1,2,3,彭梓芳1,2,徐莹1,2(),刘建国1,2,王海永1,2,王晨光1,2,张琦1,2,马隆龙1,2
收稿日期:
2019-12-16
修回日期:
2020-05-20
出版日期:
2020-08-05
发布日期:
2020-08-05
通讯作者:
徐莹
作者简介:
王东玲(1995—),女,硕士研究生,基金资助:
Dongling WANG1,2,3(),Wenjin WANG1,2,3,Zifang PENG1,2,Ying XU1,2(),Jianguo LIU1,2,Haiyong WANG1,2,Chenguang WANG1,2,Qi ZHANG1,2,Longlong MA1,2
Received:
2019-12-16
Revised:
2020-05-20
Online:
2020-08-05
Published:
2020-08-05
Contact:
Ying XU
摘要:
为进一步理解有机溶剂对木质素的提取率以及结构的影响,系统地研究了6种有机醇溶剂(甲醇、乙醇、正丙醇、乙二醇、1,3-丙二醇和1,4-丁二醇)在提取过程中溶剂极性等特性对木质素收率的影响;同时采用SEM(扫描电镜)、GPC(凝胶渗透色谱仪)、NMR等方法进一步探讨了不同醇溶剂对木质素形貌、分子量与官能团等的影响。结果表明,在所研究的6种有机醇溶剂中,极性、碳链长度与羟基数目对木质素收率、形貌、分子量、官能团等具有显著的影响;羟基数相同时,碳链越长、极性越弱,木质素的收率越高,重均分子量相对越大;一元醇溶剂体系提取的木质素中C、H元素的含量随着碳链长度的增长而降低,而二元醇体系中提取的木质素中C、H元素的含量呈相反的变化趋势;同等碳数的有机醇溶剂随羟基数增多,木质素的收率降低,重均分子量也相应减小。
中图分类号:
王东玲, 王文锦, 彭梓芳, 徐莹, 刘建国, 王海永, 王晨光, 张琦, 马隆龙. 醇溶剂提取松木木质素及其结构表征[J]. 化工学报, 2020, 71(8): 3761-3769.
Dongling WANG, Wenjin WANG, Zifang PENG, Ying XU, Jianguo LIU, Haiyong WANG, Chenguang WANG, Qi ZHANG, Longlong MA. Structure characterization of pine lignin extracted by different alcohol solvents[J]. CIESC Journal, 2020, 71(8): 3761-3769.
生物质 | 纤维素 | 半纤维素 | 木质素 | 灰分 | 水分 | 可溶性杂质 |
---|---|---|---|---|---|---|
松木粉 | 42.69% | 22.60% | 22.93% | 0.59% | 4.89% | 4.90% |
表1 松木粉的组分分析
Table 1 Composition analysis of pine wood powder
生物质 | 纤维素 | 半纤维素 | 木质素 | 灰分 | 水分 | 可溶性杂质 |
---|---|---|---|---|---|---|
松木粉 | 42.69% | 22.60% | 22.93% | 0.59% | 4.89% | 4.90% |
溶剂 | 极性 参数 | 催化剂 | 温度/℃ | 时间/min | 得率/% (质量) |
---|---|---|---|---|---|
甲醇 | 6.6 | 乙酸+硫酸 | 160 | 60 | 57.87 |
乙醇 | 4.3 | 乙酸+硫酸 | 160 | 60 | 77.02 |
正丙醇 | 4 | 乙酸+硫酸 | 160 | 60 | 81.35 |
乙二醇 | 6.9 | 乙酸+硫酸 | 160 | 60 | 36.35 |
1,3-丙二醇 | — | 乙酸+硫酸 | 160 | 60 | 70.66 |
1,4-丁二醇 | — | 乙酸+硫酸 | 160 | 60 | 91.73 |
表2 松木粉在不同醇溶剂中提取的木质素得率
Table 2 Yield of lignin from pine wood extracted with different alcohol solvents
溶剂 | 极性 参数 | 催化剂 | 温度/℃ | 时间/min | 得率/% (质量) |
---|---|---|---|---|---|
甲醇 | 6.6 | 乙酸+硫酸 | 160 | 60 | 57.87 |
乙醇 | 4.3 | 乙酸+硫酸 | 160 | 60 | 77.02 |
正丙醇 | 4 | 乙酸+硫酸 | 160 | 60 | 81.35 |
乙二醇 | 6.9 | 乙酸+硫酸 | 160 | 60 | 36.35 |
1,3-丙二醇 | — | 乙酸+硫酸 | 160 | 60 | 70.66 |
1,4-丁二醇 | — | 乙酸+硫酸 | 160 | 60 | 91.73 |
木质素 | Mw | Mn | Mz | PD |
---|---|---|---|---|
甲醇木质素 | 1339 | 583 | 2499 | 2.29 |
乙醇木质素 | 2065 | 676 | 4766 | 3.05 |
正丙醇木质素 | 2315 | 654 | 5930 | 3.53 |
乙二醇木质素 | 1283 | 608 | 2242 | 2.11 |
1,3-丙二醇木质素 | 1695 | 684 | 3274 | 2.48 |
1,4-丁二醇木质素 | 2267 | 657 | 5614 | 3.45 |
表3 在不同醇溶剂中提取的松木木质素的分子量
Table 3 Molecular weight of pine lignin extracted with different alcohol solvents
木质素 | Mw | Mn | Mz | PD |
---|---|---|---|---|
甲醇木质素 | 1339 | 583 | 2499 | 2.29 |
乙醇木质素 | 2065 | 676 | 4766 | 3.05 |
正丙醇木质素 | 2315 | 654 | 5930 | 3.53 |
乙二醇木质素 | 1283 | 608 | 2242 | 2.11 |
1,3-丙二醇木质素 | 1695 | 684 | 3274 | 2.48 |
1,4-丁二醇木质素 | 2267 | 657 | 5614 | 3.45 |
木质素 | C | H | O① | 经验式 | HHV②/(MJ/kg) | Ω③ |
---|---|---|---|---|---|---|
甲醇木质素 | 69.32 | 6.81 | 23.87 | C9H10.61O2.32 | 28.89 | 4.70 |
乙醇木质素 | 67.88 | 6.72 | 25.40 | C9H10.69O2.53 | 28.00 | 4.65 |
正丙醇木质素 | 67.55 | 6.74 | 25.71 | C9H10.78O2.57 | 27.87 | 4.61 |
乙二醇木质素 | 65.38 | 6.44 | 28.18 | C9H10.64O2.91 | 26.27 | 4.68 |
1,3-丙二醇木质素 | 66.29 | 6.71 | 27.00 | C9H10.93O2.75 | 27.17 | 4.54 |
1,4-丁二醇木质素 | 66.93 | 6.57 | 26.50 | C9H10.60O2.67 | 27.27 | 4.70 |
表4 在不同醇溶剂中提取的松木木质素的元素分析
Table 4 Element analysis of pine lignin extracted with different alcohol solvents
木质素 | C | H | O① | 经验式 | HHV②/(MJ/kg) | Ω③ |
---|---|---|---|---|---|---|
甲醇木质素 | 69.32 | 6.81 | 23.87 | C9H10.61O2.32 | 28.89 | 4.70 |
乙醇木质素 | 67.88 | 6.72 | 25.40 | C9H10.69O2.53 | 28.00 | 4.65 |
正丙醇木质素 | 67.55 | 6.74 | 25.71 | C9H10.78O2.57 | 27.87 | 4.61 |
乙二醇木质素 | 65.38 | 6.44 | 28.18 | C9H10.64O2.91 | 26.27 | 4.68 |
1,3-丙二醇木质素 | 66.29 | 6.71 | 27.00 | C9H10.93O2.75 | 27.17 | 4.54 |
1,4-丁二醇木质素 | 66.93 | 6.57 | 26.50 | C9H10.60O2.67 | 27.27 | 4.70 |
图1 不同醇溶剂提取的木质素SEM图ML—甲醇木质素;EL—乙醇木质素;NPL—正丙醇木质素;1,4-BL—1,4-丁二醇木质素;EGL—乙二醇木质素;1,3-PL—1,3-丙二醇木质素
Fig.1 SEM images of lignin extracted with different alcohol solvents
结构 单元 | δC/δH | 归属 |
---|---|---|
—OCH3 | 56.0/3.8 | 苯环上甲氧基结构 |
Aα | 71.6/4.7 | 苏式β-O-4(A)结构中的Cα—Hα |
Aβ | 80.5/4.4 & 83.9/4.3 | 连接G单元的β-O-4(A)结构中的Cβ—Hβ |
Aγ | 60.4/3.6 | β-O-4(A)结构中的Cγ—Hγ |
Aγ′ | 63.0/3.8~4.10 | 乙酰化的β-O-4(A)结构中的Cγ—Hγ |
Bα | 85.4/4.6 | 树脂醇(B)中β-β的Cα—Hα |
Bβ | 53.5/3.07 | 树脂醇(B)中β-β的Cβ—Hβ |
Bγ | 72.9/3.7 | 树脂醇(B)中β-β的Cγ—Hγ |
Cα | 87.5/5.4 | 苯基香豆满(C)中的Cα—Hα |
Cβ | 49.8/3.6 | 苯基香豆满(C)中的Cβ—Hβ |
Cγ | 62.9/3.6 | 苯基香豆满(C)中的Cγ—Hγ |
D | 60.6/4.0 | 松柏醇 |
G2 | 112.6/6.8 | 愈创木基(G)中的C2—H2 |
G5 | 115.6/6.7 | 愈创木基(G)中的C5—H5 |
G6 | 121.1/6.5 | 愈创木基(G)中的C6—H6 |
FA2 | 110.3/7.2 | 阿魏酸酯(p-FA)结构中的C2—H2 |
FA6 | 124.2/6.9 | 阿魏酸酯(p-FA)结构中的C6—H6 |
PCE2,6 | 128.7/7.2 | 对香豆酸酯结构中的C2,6—H2,6 |
H2,6 | 125.8/6.9 | 对羟苯基结构中的C2,6—H2,6 |
X5 | 62.8/3.3 | β-D-吡喃吡喃糖苷中的C5—H5 |
表5 木质素中二维核磁13C-1H HSQC主要化学位移的归属
Table 5 Assignment of main 13C-1H cross-signals in the HSQC spectra of the lignin
结构 单元 | δC/δH | 归属 |
---|---|---|
—OCH3 | 56.0/3.8 | 苯环上甲氧基结构 |
Aα | 71.6/4.7 | 苏式β-O-4(A)结构中的Cα—Hα |
Aβ | 80.5/4.4 & 83.9/4.3 | 连接G单元的β-O-4(A)结构中的Cβ—Hβ |
Aγ | 60.4/3.6 | β-O-4(A)结构中的Cγ—Hγ |
Aγ′ | 63.0/3.8~4.10 | 乙酰化的β-O-4(A)结构中的Cγ—Hγ |
Bα | 85.4/4.6 | 树脂醇(B)中β-β的Cα—Hα |
Bβ | 53.5/3.07 | 树脂醇(B)中β-β的Cβ—Hβ |
Bγ | 72.9/3.7 | 树脂醇(B)中β-β的Cγ—Hγ |
Cα | 87.5/5.4 | 苯基香豆满(C)中的Cα—Hα |
Cβ | 49.8/3.6 | 苯基香豆满(C)中的Cβ—Hβ |
Cγ | 62.9/3.6 | 苯基香豆满(C)中的Cγ—Hγ |
D | 60.6/4.0 | 松柏醇 |
G2 | 112.6/6.8 | 愈创木基(G)中的C2—H2 |
G5 | 115.6/6.7 | 愈创木基(G)中的C5—H5 |
G6 | 121.1/6.5 | 愈创木基(G)中的C6—H6 |
FA2 | 110.3/7.2 | 阿魏酸酯(p-FA)结构中的C2—H2 |
FA6 | 124.2/6.9 | 阿魏酸酯(p-FA)结构中的C6—H6 |
PCE2,6 | 128.7/7.2 | 对香豆酸酯结构中的C2,6—H2,6 |
H2,6 | 125.8/6.9 | 对羟苯基结构中的C2,6—H2,6 |
X5 | 62.8/3.3 | β-D-吡喃吡喃糖苷中的C5—H5 |
1 | Gazi S. Valorization of wood biomass-lignin viaselective bond scission: a minireview[J]. Applied Catalysis B: Environmental, 2019, 257: 117936. |
2 | Li C Z, Zhao X C, Wang A Q, et al. Catalytic transformation of lignin for the production of chemicals and fuels[J]. Chemical Reviews, 2015, 115(21): 11559-11624. |
3 | Lou R, Lyu G J, Wu S B, et al. Mechanistic investigation of rice straw lignin subunit bond cleavages and subsequent formation of monophenols[J]. ACS Sustainable Chemistry & Engineering, 2017, 6(1): 430-437. |
4 | Rahimi A, Ulbrich A, Coon J J, et al. Formic-acid-induced depolymerization of oxidized lignin to aromatics[J]. Nature, 2014, 515(7526): 249-252. |
5 | Guo D L, Wu S B, Lyu G J, et al. Effect of molecular weight on the pyrolysis characteristics of alkali lignin[J]. Fuel, 2017, 193: 45-53. |
6 | Jiang Z C, Hu C W. Selective extraction and conversion of lignin in actual biomass to monophenols: a review[J]. Journal of Energy Chemistry, 2016, (6): 65-74. |
7 | Jiang Z C, He T, Li J M, et al. Selective conversion of lignin in corncob residue to monophenols with high yield and selectivity[J]. Green Chemistry, 2014, 16(9): 4257. |
8 | Pandey M P, Kim C S. Lignin depolymerization and conversion: a review of thermochemical methods[J]. Chemical Engineering & Technology, 2011, 34(1): 29-41. |
9 | Holladay J E, White J F, Bozell J J, et al. Top value-added chemicals from biomass (volume Ⅱ): Results of screening for potential candidates from biorefinery lignin[R]. Richland W A. US: Pacific Northwest National Laboratory(PNNL), 2007. |
10 | 郑秋闿, 董庆顺. 三种不同来源木质素的结构分析[J]. 潍坊学院学报, 2011, (6): 58-61. |
Zheng Q K, Dong Q S. Structural analysis of lignins from three different sourses[J]. Journal of Weifang University, 2011, (6): 58-61. | |
11 | 阮涛. 溶剂及木质素结构对木质素解聚的影响[D]. 广州: 华南理工大学, 2016. |
Ruan T. Effect of solvent and lignin structure on the depolymerization of lignin[D]. Guangzhou: South China University of Technology, 2016. | |
12 | Toledano A, Serrano L, Labidi J. Enhancement of lignin production from olive tree pruning integrated in a green biorefinery[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6573-6579. |
13 | Brosse N, El Hage R, Sannigrahi P, et al. Dilute sulphuric acid and ethanol organosolv pretreatment of Miscanthus x giganteus[J]. Cell Chem. Technol., 2010, (44): 71-78. |
14 | Luo H, Abu-Omar M M. Lignin extraction and catalytic upgrading from genetically modified poplar[J]. Green Chemistry, 2018, 20(3): 745-753. |
15 | Shuai L, Amiri M T, Questell-Santiago Y M, et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization[J]. Science, 2016, 354(6310): 329-333. |
16 | Liu X D, Jiang Z C, Feng S S, et al. Catalytic depolymerization of organosolv lignin to phenolic monomers and low molecular weight oligomers[J]. Fuel, 2019, (244): 247-257. |
17 | 朱宛萤. 乙二醇法提取椰壳纤维木质素研究[D]. 哈尔滨: 东北林业大学, 2018. |
Zhu W Y. Study on the extraction of lignin from coconut shell fiber by ethlene glycol method[D]. Harbin: Northeast Forestry University, 2018. | |
18 | Sun F B, Chen H Z. Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment[J]. Bioresource Technology, 2008, 99(14): 6156-6161. |
19 | Sluiter A, Hames B, Ruiz R, et al. Determination of structural carbohydrates and lignin in biomass[R]. Technical Report NREL/TP-510-42618. USA: NREL Laboratory Analytical Procedure(LAP), 2011. |
20 | 张红漫, 郑荣平, 陈敬文, 等. NREL法测定木质纤维素原料组分的含量[J]. 分析试验室, 2010, 29(11): 15-18. |
Zhang H M, Zheng R P, Chen J W, et al. Investigation on the determination of lignocellulosics componets by NREL method[J]. Chinese Journal of Analysis Laboratory, 2010, 29(11): 15-18. | |
21 | Anderson E M, Katahira R, Reed M, et al. Reductive catalytic fractionation of corn stover lignin[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6940-6950. |
22 | Klein I, Marcum C, Kenttamaa H I, et al. Mechanistic investigation of the Zn/Pd/C catalyzed cleavage and hydrodeoxygenation of lignin[J]. Green Chem., 2016, 18(8): 2399-2405. |
23 | 徐蕾, 孟永斌, 张子东, 等. 乙醇法提取植物纤维剩余物中木质素的表征[J]. 植物研究, 2016, (2): 316-320. |
Xu L, Meng Y B, Zhang Z D, et al. Characterization of kraft lignin and ethanol lignin[J]. Plant Research, 2016, (2): 316-320. | |
24 | Toledano A, Serrano L, Pineda A, et al. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: catalyst screening[J]. Applied Catalysis B Environmental, 2012, 145(2): 43-55. |
25 | Nagy M, David K, Britovsek G J P, et al. Catalytic hydrogenolysis of ethanol organosolv lignin[J]. Holzforschung, 2009, 63(5): 513-520. |
26 | 罗渊, 李云雁, 甘济勇. 从稻草中分离乙二醇木质素的研究[J]. 湖北农业科学, 2009, (1): 168-171. |
Luo Y, Li Y Y, Gan J Y. Isolation of lignin from rice straw by glycol[J]. Hubei Agricultural Sciences, 2009, (1): 168-171. | |
27 | Song Q, Wang F, Cai J Y, et al. Lignin depolymerization(LDP) in alcohol over nickel-based catalysts via a fragmentation-hydrogenolysis process[J]. Energy & Environmental Science, 2013, 6(3): 994-1007. |
28 | Lahive C W, Deuss P J, Lancefield C S, et al. Advanced model compounds for understanding acid catalyzed lignin depolymerization: identification of renewable aromatics and a lignin-derived solvent[J]. Journal of the American Chemical Society, 2016, 138(28): 8900-8911. |
29 | 黄丽君, 叶菊娣, 徐诚, 等. 改进的高沸醇溶剂法分离稻草中木质素的研究[J]. 南京林业大学学报(自然科学版), 2010, (2): 104-106. |
Huang L J, Ye J D, Xu C, et al. Separation of lignin from rice straw by modified method of HBS[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2010, (2): 104-106. | |
30 | Kishimoto T, Sano Y. Delignification mechanism during high-boiling solvent pulping (Part 1): Reaction of guaiacylglycerol-beta-guaiacyl ether[J]. Holzforschung, 2001, 55: 611-616. |
31 | Rodríguez A, Serrano L, Moral A, et al. Pulping of rice straw with high-boiling point organosolv solvents[J]. Biochemical Engineering Journal, 2008, 42(3): 243-247. |
32 | 米远祝, 颜学敏, 但悠梦, 等.极性有机溶剂对镍颗粒晶型的影响[J].磁性材料及器件, 2009, 40(2): 10-13+44. |
Mi Y Z, Yan X M, Dan Y M, et al. Effect of polar organic solvent on the crystal phase of nickel particle[J]. Journal of Magnetic Materials and Devices, 2009, 40(2): 10-13+44. | |
33 | 李赢, 石刚, 石贵阳, 等.不同提取方法对所得稻壳基木质素的影响研究[J].化学研究与应用, 2015, 27(6): 903-909. |
Li Y, Shi G, Shi G Y, et al. Study on the effect of different extraction methods on rice husk based lignin[J]. Chemical Research and Application, 2015, 27(6): 903-909. | |
34 | 胡宗潇. 秸秆木质素的提取及其制备芳香醛[D]. 武汉: 武汉轻工大学, 2019. |
Hu Z X. Catalytic conversion of lignin extracted from straw to aromatic aldehyde [D]. Wuhan: Wuhan Polytechnic University, 2019. | |
35 | 郭贵全, 王红娟, 谌凡更.植物纤维在供氢溶剂中的液化反应[J].纤维素科学与技术, 2003, (2): 41-50. |
Guo G Q, Wang H J, Chen F G. Thermochemical liquefaction of lignocellulosic materials in hydrogen-donor solvent[J]. Journal of Cellulose Science and Technology, 2003, (2): 41-50. | |
36 | Agha H, Pedram F. Cationic kraft lignin-acrylamide as a flocculant for clay suspensions(1): Molecular weight effect[J]. Separation and Purification Technology, 2018, 207: 213-221. |
37 | Boeriu C G, Bravo D, Gosselink R J A, et al. Characterisation of structure-dependent functional properties of lignin with infrared spectroscopy[J]. Industrial Crops and Products, 2004, 20(2): 205-218. |
38 | 文甲龙. 生物质木质素结构解析及其预处理解离机制研究[D]. 北京: 北京林业大学, 2014. |
Wen J L. Structural elucidation of lignin from biomass and its dissociative mechanism during pretreatment process [D]. Beijing: Beijing Forestry University, 2014. | |
39 | Xiao L P, Wang S, Li H, et al. Catalytic hydrogenolysis of lignins into phenolic compounds over carbon nanotube supported molybdenum oxide[J]. ACS Catalysis, 2017, 7(11): 7535-7542. |
40 | Kisimoto T, Ueki A, Takamori H, et al. Delignification mechanism during high-boiling solvent pulping (Part 6): Changes in lignin structure analyzed by 1H-13C correlation 2-D NMR spectroscopy[J]. Holzforschung, 2004, 58(4): 355-362. |
41 | Xue B L, Huang P L, Sun Y C, et al. Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis[J]. RSC advances, 2017, 7(10): 6123-6130. |
42 | Lan W, Amiri M T, Hunston C M, et al. Protection group effects during α, γ-diol lignin stabilization promote high-selectivity monomer production[J]. Angewandte Chemie International Edition, 2018, 57(5): 1356-1360. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[5] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[6] | 陈天华, 刘兆轩, 韩群, 张程宾, 李文明. 喷雾冷却换热强化研究进展及影响因素[J]. 化工学报, 2023, 74(8): 3149-3170. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[9] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[10] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[11] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[12] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[13] | 吴文涛, 褚良永, 张玲洁, 谭伟民, 沈丽明, 暴宁钟. 腰果酚生物基自愈合微胶囊的高效制备工艺研究[J]. 化工学报, 2023, 74(7): 3103-3115. |
[14] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[15] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||