1 |
Liu C, Wang H, Karim A M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22): 7594-7623.
|
2 |
Wan S, Wand Y. A review on ex situ catalytic fast pyrolysis of biomass[J]. Frontiers of Chemical Science and Engineering, 2014, 8(3): 280-294.
|
3 |
孙来芝, 陈雷, 赵保峰, 等. Mo/ZSM-5催化作用下生物质快速热解制生物油实验研究[J].化工学报, 2019, 70(8): 3160-3166.
|
|
Sun L Z, Chen L, Zhao B F, et al. Mo/ZSM-5 catalyzed rapid pyrolysis of biomass to bio-oil [J]. CIESC Journal, 2019, 70(8): 3160-3166.
|
4 |
刘阳, 刘捷成, 俞海淼, 等. 新型镍基镁渣催化重整松木热解挥发分焦油析出特性研究[J].化工学报, 2019, 70(8): 2991-2999.
|
|
Liu Y, Liu J C, Yu H M, et al. Study on the tar separation characteristics of pyrolysis volatiles of pine wood by new nickel-based magnesium slag[J]. CIESC Journal, 2019, 70(8): 2991-2999.
|
5 |
苗鹏, 常国璋, 燕希敏, 等. 微藻/核桃壳混合热解需热量及制备芳烃研究[J]. 化工学报, 2018, 69(5): 2137-2148.
|
|
Miao P, Chang G Z, Yan X M, et al. Experimental study on thermal demanding and preparation of aromatics of mixed pyrolysis of Nannochloropsis sp./walnut shell[J]. CIESC Journal, 2018, 69(5): 2137-2148.
|
6 |
Rezaei P S, Shafaghat H, Daud W M, et al. Production of green aromatics and olefins by catalytic cracking ofoxygenate compounds derived from biomass pyrolysis: a review[J]. Applied Catalysis A: General, 2014, 469: 490-511.
|
7 |
Inc Anellotech. Anellotech pilot plant campaign surpasses 5000 hours of operations, achieving both yield and reactor outlet oxygenate targets[EB/OL]. [2019-07-08]. http: //anellotech.com/sites/default/files/Anellotech%20News-%20Technology%20Update%20-%20July%208%202019.
|
|
pdf.
|
8 |
Ruddy D A, Schaidle J A, Ferrell III J R, et al. Recent advances in heterogeneous catalysts for bio-oil upgrading via "ex situ catalytic fast pyrolysis": catalyst development through the study of model compounds[J]. Green Chemistry, 2014, 16: 454-490.
|
9 |
Li X, Su L, Wang Y, et al. Catalytic fast pyrolysis of Kraft lignin with HZSM-5 zeolite for producing aromatic hydrocarbons[J]. Frontiers of Chemical Science and Engineering, 2012, 6(3): 295-303.
|
10 |
Miandad R, Barakat M A, Aburiazaiza A S, et al. Catalytic pyrolysis of plastic waste: a review[J]. Process Safety and Environmental Protection, 2016, 102: 822-838.
|
11 |
Rezaei P S, Shafaghat H, Daud W M. Suppression of coke formation and enhancement of aromatic hydrocarbon production in catalytic fast pyrolysis of cellulose over different zeolites: effects of pore structure and acidity[J]. RSC Advances, 2015, 5: 65408- 65414.
|
12 |
Jae J, Tompsett G A, Foster A J, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. Journal of Catalysis, 2011, 279(2): 257-268.
|
13 |
Degnan T F. The implications of the fundamentals of shape selectivity for the development of catalysts for the petroleum and petrochemical industries[J]. Journal of Catalysis, 2003, 216(1/2): 32-46.
|
14 |
Li J, Li X, Zhou G, et al. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions[J]. Applied Catalysis A: General, 2014, 470: 115-122.
|
15 |
Aho A, Kumar N, Eränen K, et al. Catalytic pyrolysis of woody biomass in a fluidized bed reactor: influence of the zeolite structure[J]. Fuel, 2008, 87(12): 2493-2501.
|
16 |
Lin X, Zhang Z, Sun J, et al. Effects of phosphorus-modified HZSM-5 on distribution of hydrocarbon compounds from wood-plastic composite pyrolysis using Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2015, 116: 223-230.
|
17 |
Cheng Y T, Huber G W. Chemistry of furan conversion into aromatics and olefins over HZSM-5: a model biomass conversion reaction[J]. ACS Catalysis, 2011, 1(6): 611-628.
|
18 |
唐松山, 泮泽优, 张长森, 等. 碱改性HZSM-5催化热解木质素催化剂失活分析[J]. 化工学报, 2017, 68(12): 4739-4749.
|
|
Tang S S, Yan Z Y, Zhang C S, et al. Deactivation analysis of catalyzed pyrolysis lignin catalyst by alkali-modified HZSM-5[J]. CIESC Journal, 2017, 68(12): 4739-4749.
|
19 |
石坤, 仲兆平, 王佳, 等. 改性HZSM-5催化微波预处理竹木快速热解[J]. 化工进展, 2018, 37(6): 150-156.
|
|
Shi K, Zhong Z P, Wang J, et al. Rapid pyrolysis of bamboo wood catalyzed by modified HZSM-5 under microwave pretreatment[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 150-156.
|
20 |
方书起, 石崇, 李攀, 等. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J].化工学报, 2020, 71(4): 1637-1645.
|
|
Fang S Q, Shi C, Li P, et al. Study on rapid pyrolysis characteristics of biomass catalyzed by Fe-Zn Co-modified ZSM-5[J]. CIESC Journal, 2020, 71(4): 1637-1645.
|
21 |
Foster A J, Jae J, Cheng Y T, et al. Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5[J]. Applied Catalysis A: General, 2012, 423/424: 154-161.
|
22 |
Puétolas B, Veses A, Callén M S, et al. Porosity–acidity interplay in hierarchical ZSM-5 zeolites for pyrolysis oil valorization to aromatics[J]. ChemSusChem, 2015, 8(19): 3283-3293.
|
23 |
Qiao K, Zhou F, Han Z, et al. Synthesis and physicochemical characterization of hierarchical ZSM-5: effect of organosilanes on the catalyst proterties and performance in the catalytic fast pyrolysisi of biomass[J]. Microporous and Mesoporous Materials, 2019, 274: 191-197.
|
24 |
Qiao K, Shi X, Zhou F, et al. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J]. Applied Catalysis A: General, 2017, 547: 274-282.
|
25 |
Zhou F, Gao Y, Ma H X, et al. Catalytic aromatization of methanol over post-treated ZSM-5 zeolites in the terms of pore structure and acid sites properties[J]. Molecular Catalysis, 2017, 438: 37-46.
|
26 |
Zhou F, Gao Y, Wu G, et al. Improved catalytic performance and decreased coke formation in post-treated ZSM-5 zeolites for methanol aromatization[J]. Microporous and Mesoporous Materials, 2017, 240: 96-107.
|
27 |
时旭, 周峰, 陈浩, 等. 醇原位催化转化制备芳烃及机理[J].化工进展, 2017, 36(7): 2517-2524.
|
|
Shi X, Zhou F, Chen H, et al. Study on in-situ catalytic conversion of alcohols to aromatics and its mechanism[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2517-2524.
|
28 |
程浩, 周峰, 陈浩, 等. 碱处理HZSM-5催化纤维素热裂解制备芳烃[J].化工进展, 2017, 36(9): 3329-3335.
|
|
Cheng H, Zhou F, Chen H, et al. Preparation of aromatics from fast catalytic pyrolysis of cellulose over alkali-treated HZSM-5[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3329-3335.
|
29 |
Lippmaa E, Samoson A, Magi M. High-resolution aluminum-27 NMR of aluminosilicates[J].Journal of the American Chemical Society, 1986, 108(8): 1730-1735.
|
30 |
Pérez-Pariente J, Sanz J, Fornés V, et al. 29Si and 27Al MAS NMR study of zeolite β with different Si/Al Ratios[J]. Journal of Catalysis, 1990, 124(1): 217-223.
|
31 |
Topsoe N Y, Pedersen K, Derouane E. Infrared and temperature programmed desorption study of the acidic properties of ZSM-5-type zeolites[J]. Journal of Catalysis, 1981, 70(1): 41-52.
|
32 |
Reddy J K, Motokura K, Koyama T, et al. Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking[J]. Journal of Catalysis, 2012, 289: 53-61.
|
33 |
Bibby D M, Milestone N B, Patterson J E, et al. Coke formation in zeolite ZSM-5[J]. Journal of Catalysis, 1986, 97: 493-502.
|