1 |
Sazhin S S. Modelling of fuel droplet heating and evaporation: recent results and unsolved problems[J]. Fuel, 2017, 196: 69-101.
|
2 |
Mcilroy I C. Terminology and concepts in natural evaporation[J]. Agr. Water Manage., 1984, 8: 77-98.
|
3 |
Ervin M H, Bedair S S, Knick C R, et al. Evaporation driven assembly of on-chip thermite devices[J]. J. Microelectromech. Syst., 2017, 26: 1408-1416.
|
4 |
Alsaadi A S, Ghaffour N, Li J D, et al. Modeling of air-gap membrane distillation process: a theoretical and experimental study[J]. J. Membrane Sci., 2013, 445: 53-65.
|
5 |
Dunn G J, Wilson S K, Duffy B R, et al. A mathematical model for the evaporation of a thin sessile liquid droplet: comparison between experiment and theory[J]. Colloids Surf. A, 2008, 323(1/2/3): 50-55.
|
6 |
Qin T R, Tuković Z, Grigoriev R O. Buoyancy-thermocapillary convection of volatile fluids under atmospheric conditions[J]. Int. J. Heat Mass Transf., 2014, 75: 284-301.
|
7 |
Ji Y, Liu Q S, Liu R. Coupling of evaporation and thermocapillary convection in a liquid layer with mass and heat exchanging interface[J]. Chinese Phys. Lett., 2008, 25: 608-611.
|
8 |
Liu R, Liu Q S, Hu W R. Marangoni-Benard instability with the exchange of evaporation at liquid-vapour interface[J]. Chinese Phys. Lett., 2005, 22: 402-404.
|
9 |
Shankar P N, Deshpande M D. On the temperature distribution in liquid-vapor phase change between plane liquid surfaces[J]. Phys. Fluids, 1990, 2(6): 1030-1038.
|
10 |
Fang G, Ward C A. Temperature measured close to the interface of an evaporating liquid[J]. Phys. Rev. E, 1999, 59: 417-428.
|
11 |
Duan F, Thompson I, Ward C A. Statistical rate theory determination of water properties below the triple point[J]. J. Phys. Chem. B, 2008, 112(29): 8605-8613.
|
12 |
Duan F, Ward C A. Surface excess properties from energy transport measurements during water evaporation[J]. Phys. Rev. E, 2005, 72: 056302.
|
13 |
Popov S, Melling A, Durst F, et al. Apparatus for investigation of evaporation at free liquid-vapour interfaces[J]. Int. J. Heat Mass Transf., 2005, 48: 2299-2309.
|
14 |
Ward C A, Fang G. Expression for predicting liquid evaporation flux: statistical rate theory approach[J]. Phys. Rev. E, 1999, 59: 429-440.
|
15 |
Bond M, Struchtrup H. Mean evaporation and condensation coefficients based on energy dependent condensation probability[J]. Phys. Rev. E, 2004, 70: 061605.
|
16 |
Badam V K, Kumar V, Durst F, et al. Experimental and theoretical investigations on interfacial temperature jumps during evaporation[J]. Exp. Therm. Fluid Sci., 2007, 32: 276-292.
|
17 |
Jafari P, Amritkar A, Ghasemi H. Temperature discontinuity at an evaporating water interface[J]. Phys. Chem. C, 2020, 124: 1554-1559.
|
18 |
Kazemi M A, Nobes D S, Elliott J A W. Experimental and numerical study of the evaporation of water at low pressures[J]. Langmuir, 2017, 33: 4578-4591.
|
19 |
Jafari P, Masoudi A, Irajizad P, et al. Evaporation mass flux: a predictive model and experiments[J]. Langmuir, 2018, 34: 11676-11684.
|
20 |
朱志强, 刘秋生. 蒸发液面热对流与温度不连续现象的实验研究[J]. 工程热物理学报, 2011, 32(1): 55-57.
|
|
Zhu Z Q, Liu Q S. Experimental investigation on the temperature discontinuity at an evaporating liquid surface[J]. Journal of Engineering Thermophysics, 2011, 32(1): 55-57.
|
21 |
Gatapova E Y, Filipenko R A, Lyulin Y V, et al. Experimental investigation of the temperature field in the gas-liquid two-layer system[J]. Thermophys. Aeromechanics, 2015, 22: 701-706.
|
22 |
Gatapova E Y, Graur I A, Kabov O A, et al. The temperature jump at water-air interface during evaporation[J]. Int. J. Heat Mass Transf., 2017, 104: 800-812.
|
23 |
Hołyst R, Litniewski M. Heat transfer at the nanoscale: evaporation of nanodroplets[J]. Physical Review Letters, 2008, 100(5): 055701.
|
24 |
Rosjorde A, Kjelstrup S, Bedeaux D, et al. Nonequilibrium molecular dynamics simulations of steady-state heat and mass transport in condensation(II): Transfer coefficients[J]. J. Colloid Interf. Sci., 2001, 240: 355-364.
|
25 |
Yu J J, Tang R, Li Y R, et al. Molecular dynamics simulation on heat transport through solid-liquid interface during argon droplet evaporation on heated substrates[J]. Langmuir, 2019, 35: 2164-2171.
|
26 |
祝及龙, 石万元. 平面上固定接触角蒸发液滴内Marangoni对流失稳现象[J]. 化工学报, 2018, 69: 53-57.
|
|
Zhu J L, Shi W Y. Marangoni instability phenomena in evaporating sessile droplet at constant contact angle mode[J]. CIESC Journal, 2018, 69: 53-57.
|
27 |
Cammenga H K, Schreiber D, Rudolph B E. Two methods for measuring the surface temperature of evaporating liquids and results obtained with water[J]. Journal of Colloid and Interface Science, 1983, 92(1): 181-188.
|
28 |
Cammenga H K, Schreiber D, Barnes G T, et al. On Marangoni convection during the evaporation of water[J]. Journal of Colloid and Interface Science, 1984, 98(2): 585-586.
|
29 |
Ward C A, Duan F. Turbulent transition of thermocapillary flow induced by water evaporation[J]. Phys. Rev. E, 2004, 69: 056308.
|
30 |
Song X, Nobes D S. Experimental investigation of evaporation-induced convection in water using laser based measurement techniques[J]. Experimental Thermal and Fluid Science, 2011, 35(6): 910-919.
|
31 |
陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019.
|
|
Tao W Q. Heat Transfer [M]. 5th ed. Beijing: Higher Education Press, 2019.
|
32 |
Wagner W, Pruß A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use[J]. J. Phys. Chem. Ref. Data, 2002, 31: 387-535.
|
33 |
Benchikh O, Fournier D, Boccara A C, et al. Photothermal measurement of the thermal conductivity of supercooled water[J]. Journal de Physique, 1985, 46(5): 727-731.
|
34 |
Ward C A, Stanga D. Interfacial conditions during evaporation or condensation of water[J]. Phys. Rev. E, 2001, 64: 051509.
|