化工学报 ›› 2020, Vol. 71 ›› Issue (12): 5479-5488.DOI: 10.11949/0438-1157.20200374
收稿日期:
2020-04-10
修回日期:
2020-08-16
出版日期:
2020-12-05
发布日期:
2020-12-05
通讯作者:
林日亿
作者简介:
李端(1994—),男,硕士研究生,基金资助:
LI Duan(),LIN Riyi(),WANG Xinwei
Received:
2020-04-10
Revised:
2020-08-16
Online:
2020-12-05
Published:
2020-12-05
Contact:
LIN Riyi
摘要:
稠油热采水平井注蒸汽是一个复杂多变的过程,水平井沿程蒸汽热物性的预测对于储层的均匀动用十分关键。考虑储层渗透率、围压和蒸汽相变等条件的相互耦合影响,建立了预测水平井注汽流动的综合数学模型。与现场测井数据进行对比分析,验证了模型的准确度。模拟结果表明,单一变量条件下,水平井跟部注汽压力越大,注汽井内质量流量和蒸汽干度下降越快,当注汽压力由11 MPa降为8.5 MPa时,配汽距离增加1倍;在水平井相同位置处,跟部注汽干度越高,注汽井内质量流量越大,且蒸汽压力下降越快,注汽干度提高1倍时,压降也几乎增加1倍;跟部注汽流量越大,蒸汽压力下降越快,注汽流量提高1.75倍时压降提高了5.3倍,但管内蒸汽干度下降趋缓;储层渗透率越高,注汽井内的蒸汽干度下降越快。该模型可以为现场注汽提供理论支撑,有效提高配汽效果达到增产降耗。
中图分类号:
李端,林日亿,王新伟. 考虑储层非均质时注汽井内蒸汽流动规律[J]. 化工学报, 2020, 71(12): 5479-5488.
LI Duan,LIN Riyi,WANG Xinwei. Steam flow law in horizontal wells when considering reservoir heterogeneity[J]. CIESC Journal, 2020, 71(12): 5479-5488.
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
水平井注汽管内径,D/m | 0.076 | 储层热扩散系数, ar/(m2/s) | 0.8×10-6 |
水平井注汽管外径, Dwo/m | 0.0889 | 储层热导率, λr/(W/(m·℃)) | 2.9 |
井深, H/m | 800 | 油藏厚度, Hr/m | 20 |
水平井环空外径, Dhw/m | 0.124 | 水平井长度, L/m | 300 |
注汽管内壁绝对粗糙度, e/m | 0.1×10-3 | 油藏热容量, Mh/(J/(m3·℃)) | 1.8×106 |
储层水平方向渗透率, Kx/μm2 | 0.5 | 原油黏度, μoil/(mPa·s) | 100000 |
储层深度方向渗透率, Kz/μm2 | 0.3 | 地表温度, Tsurf/℃ | 20 |
高渗带深度方向渗透率, Kz2/3/μm2 | 0.6/0.5 | 注汽时间, τ/s | 110000 |
表1 计算所用水平井基本参数
Table 1 Basic parameters of a horizontal well
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
水平井注汽管内径,D/m | 0.076 | 储层热扩散系数, ar/(m2/s) | 0.8×10-6 |
水平井注汽管外径, Dwo/m | 0.0889 | 储层热导率, λr/(W/(m·℃)) | 2.9 |
井深, H/m | 800 | 油藏厚度, Hr/m | 20 |
水平井环空外径, Dhw/m | 0.124 | 水平井长度, L/m | 300 |
注汽管内壁绝对粗糙度, e/m | 0.1×10-3 | 油藏热容量, Mh/(J/(m3·℃)) | 1.8×106 |
储层水平方向渗透率, Kx/μm2 | 0.5 | 原油黏度, μoil/(mPa·s) | 100000 |
储层深度方向渗透率, Kz/μm2 | 0.3 | 地表温度, Tsurf/℃ | 20 |
高渗带深度方向渗透率, Kz2/3/μm2 | 0.6/0.5 | 注汽时间, τ/s | 110000 |
1 | Hein F J. Geology of bitumen and heavy oil: an overview[J]. Journal of Petroleum Science and Engineering, 2017, 154: 551-563. |
2 | 王勇, 王立敏. 提高能效低碳发展携手应对能源挑战——《BP2030世界能源展望》解读[J]. 国际石油经济, 2012, 20(4): 14-20. |
Wang Y, Wang L M. Improve energy efficiency and low-carbon development to meet energy challenges — on reading “BP Energy Outlook 2030” [J]. International Petroleum Economics, 2012, 20(4): 14-20. | |
3 | 李朋, 张艳玉, 孙晓飞, 等. 稠油油藏双管水平井注汽井筒参数预测新模型[J]. 特种油气藏, 2019, 26(4): 85-90. |
Li P, Zhang Y Y, Sun X F, et al. A new wellbore parameter prediction model for dual - tube horizontal well steam injection in heavy oil reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(4): 85-90. | |
4 | 高一云. 水平井蒸汽吞吐技术在顶底水层状稠油油藏中的应用[J]. 石化技术, 2019, 26(1): 332. |
Gao Y Y. Application of horizontal well steam stimulation technology in top and bottom water layered heavy oil reservoirs[J]. Petrochemical Industry Technology, 2019, 26(1): 332. | |
5 | 齐国超. 超稠油水平井注汽优化设计及应用研究[J]. 中国石油和化工标准与质量, 2018, 38(13): 106-107. |
Qi G C. Optimal design and application of steam injection in ultra-heavy oil horizontal wells[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(13): 106-107. | |
6 | 马思洁. 水平井分段式注汽优化设计与应用[J]. 中国石油和化工标准与质量, 2017, 37(18): 130-131. |
Ma S J. Optimized design and application of segmented steam injection in horizontal wells[J]. China Petroleum and Chemical Standard and Quality, 2017, 37(18): 130-131. | |
7 | 陈会娟, 李明忠, 狄勤丰, 等. 多点注汽水平井井筒出流规律数值模拟[J]. 石油学报, 2017, 38(6): 696-704. |
Chen H J, Li M Z, Di Q F, et al. Numerical simulation of the outflow performance for horizontal wells with multiple steam injection valves[J]. Acta Petrolei Sinica, 2017, 38(6): 696-704. | |
8 | 郭春生, 徐明海, 薛世峰, 等. 水平井注蒸汽非稳态传热与流动分析[J]. 中国石油大学学报(自然科学版), 2016, 40(4): 116-120. |
Guo C S, Xu M H, Xue S F, et al. Process analysis of unsteady heat transfer and fluid flow during steam injection via horizontal wells[J]. Journal of China University of Petroleum(Edition of Natural Science), 2016, 40(4): 116-120. | |
9 | 郭春生, 薛世峰, 徐明海, 等. 水平井注汽启动阶段流动特性研究[J]. 工程热物理学报, 2016, 37(3): 567-572. |
Guo C S, Xue S F, Xu M H, et al. Research on heat and mass transfer characteristics of steam injection thermal recovery by horizontal well in star stage[J]. Journal of Engineering Thermophysics, 2016, 37(3): 567-572. | |
10 | 肖翠, 刘辉, 杜建芬, 等. 水平井注汽开发浅层稠油油藏参数优化研究[J]. 油气藏评价与开发, 2014, 4(1): 50-53. |
Xiao C, Liu H, Du J F, et al. Research on parameter optimization of steam injection development technology of horizontal wells in shallow heavy oil reservoir[J]. Reservoir Evaluation and Development, 2014, 4(1): 50-53. | |
11 | 王永佩. 水平井过热蒸汽循环预热井筒传热模拟[J]. 北京石油化工学院学报, 2019, 27(2): 11-16.Wang Y P. Simulation of superheated steam circulating in sealed wellbores[J]. Journal of Beijing Institute of Petrochemical Technology, 2019, 27(2): 11-16. |
12 | 尹虎, 刘辉, 田璐. 稠油水平井蒸汽吞吐完井与注汽方式优化[J]. 石油天然气学报, 2014, 36(8): 137-140+8. |
Yin H, Liu H, Tian L. Optimization the modes of completion and injection of steam stimulation of horizontal well in heavy-oil reservoirs[J]. Journal of Oil and Gas Technology, 2014, 36(8): 137-140 + 8. | |
13 | 刘德铸. 稠油水平井均匀注汽技术[J]. 特种油气藏, 2014, 21(5): 127-129+157. |
Liu D Z. Uniform steam injection technology for heavy oil horizontal wells [J]. Special Oil & Gas Reservoirs, 2014, 21(5): 127-129 + 157. | |
14 | 李金发, 栾智勇, 赵晓红, 等. 水平井均衡注汽技术[J]. 钻采工艺, 2013, 36(6): 48-50+4. |
Li J F, Luan Z Y, Zhao X H, et al. Uniform steam injection technology of horizontal well[J]. Drilling & Production Technology, 2013, 36(6): 48-50 + 4. | |
15 | 于连东. 世界稠油资源的分布及其开采技术的现状与展望[J]. 特种油气藏, 2001, (2): 99-104+111. |
Yu L D. Distribution of world heavy oil reserves and its recovery technologies and future [J]. Special Oil & Gas Reservoirs, 2001, (2): 99-104+111. | |
16 | Guo K, Li H, Yu Z. In-situ heavy and extra-heavy oil recovery: a review[J]. Fuel, 2016, 185: 886-902. |
17 | 李术元, 王剑秋, 钱家麟. 世界油砂资源的研究及开发利用[J]. 中外能源, 2011, 16(5): 10-23. |
Li S Y, Wang J Q, Qian J L. Research, development and utilization of oil sand resources in the world[J]. Sino-Global Energy, 2011, 16(5): 10-23. | |
18 | 李华锋, 王庆, 冯祥. 考虑井筒压降的水平井流速及压力分布研究[J]. 断块油气田, 2011, 18(3): 366-368. |
Li H F, Wang Q, Feng X. Research on flow velocity and pressure distribution of horizontal well considering wellbore pressure drops[J]. Fault-Block Oil & Gas Field, 2011, 18(3): 366-368. | |
19 | 东晓虎, 刘慧卿, 庞占喜, 等. 稠油水平井平行双管注汽井筒参数计算模型[J]. 中南大学学报(自然科学版), 2014, 45(3): 939-945. |
Dong X H, Liu H Q, Pang Z X, et al. Model for steam properties in parallel-tubing horizontal wells of heavy oil reservoir[J]. Journal of Central South University(Science and Technology), 2014, 45(3): 939-945. | |
20 | Xu X. Analysis and calculation of the flow pressure in the multipoint steam injection string of a horizontal well [J]. Applied Mechanics & Materials, 2014, 686: 503-506. |
21 | Sun F, Yao Y, Li X, et al. Effect of friction work on key parameters of steam at different state in toe-point injection horizontal wellbores[J]. Journal of Petroleum Science and Engineering, 2018, 164: 655-662. |
22 | Gu H, Cheng L, Huang S, et al. Thermophysical properties estimation and performance analysis of superheated-steam injection in horizontal wells considering phase change[J]. Energy Conversion and Management, 2015, 99: 119-131. |
23 | Fan Z F, He C G, Xu A Z. Calculation model for on-way parameters of horizontal wellbore in the superheated steam injection[J]. Petroleum Exploration and Development, 2016, 43(5): 798-805. |
24 | 王一平, 李明忠, 高晓, 等. 注蒸汽水平井井筒内参数计算新模型[J]. 西南石油大学学报(自然科学版), 2010, 32(4): 127-132+205. |
Wang Y P, Li M Z, Gao X, et al. A new parameter-calculating model for steam flooding horizontal wellbore [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2010, 32(4): 127-132 + 205. | |
25 | 陈新民. 水平井均匀注汽工艺在滨南油田的研究与应用[J]. 油气地质与采收率, 2009, 16(2): 106-107. |
Chen X M. Research and application of uniform steam injection in the horizontal wells, Binnan Oilfield[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(2): 106-107. | |
26 | 倪学锋, 程林松. 水平井蒸汽吞吐热采过程中水平段加热范围计算模型[J]. 石油勘探与开发, 2005, 32(5): 108-112. |
Ni X F, Cheng L S. Calculating models for heating area of horizontal wellbore in steam stimulation[J]. Petroleum Exploration and Development, 2005, 32(5): 108-112. | |
27 | Beggs D H, Brill J P. A study of two-phase flow in inclined pipes[J]. Journal of Petroleum Technology, 1973, 25(5): 607-617. |
28 | Williams R L, Ramey Jr H J, Brown S C, et al. An engineering economic model for thermal recovery methods[C]//SPE California Regional Meeting. Society of Petroleum Engineers, 1980. |
29 | 陈月明. 注蒸汽热力采油[M]. 东营: 石油大学出版社, 1996: 146-148. |
Chen Y M. Steam Injection Thermal Recovery[M]. Dongying: Petroleum University Press, 1996: 146-148. | |
30 | Chien S F. Empirical correlations of saturated steam properties[J]. SPE Reservoir Engineering, 1992, 7(2): 295-303. |
31 | 张丁涌. 稠油热采水平井温度测试及注汽剖面分析[J]. 中国石油大学学报(自然科学版), 2017, (2): 124-131. |
Zhang D Y. Temperature test and injection profile analysis in heavy oil thermal recovery horizontal well [J]. Journal of China University of Petroleum(Edition of Natural Science), 2017, (2): 124-131. |
[1] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[4] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[5] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[6] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[7] | 史昊鹏, 钟达文, 廉学新, 张君峰. 朝下多尺度沟槽翅片结构表面沸腾换热实验研究[J]. 化工学报, 2023, 74(7): 2880-2888. |
[8] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[9] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[10] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[11] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[12] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[13] | 李振, 张博, 王丽伟. PEG-EG固-固相变材料的制备和性能研究[J]. 化工学报, 2023, 74(6): 2680-2688. |
[14] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[15] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||