化工学报 ›› 2021, Vol. 72 ›› Issue (3): 1314-1321.DOI: 10.11949/0438-1157.20200768
收稿日期:
2020-06-18
修回日期:
2020-09-09
出版日期:
2021-03-05
发布日期:
2021-03-05
通讯作者:
黄卫星
作者简介:
郝仁杰(1995—),男,硕士研究生,HAO Renjie1(),QIAO Min2,HUANG Weixing1()
Received:
2020-06-18
Revised:
2020-09-09
Online:
2021-03-05
Published:
2021-03-05
Contact:
HUANG Weixing
摘要:
通过高速摄像机和压力传感器测量,对脉冲流的产生机理、筛板数的影响、液相脉冲传播速度及频率进行了系统的研究。实验发现:脉冲流是重力和气流曳力作用下,孔口液相波动在向下传播过程中被叠加放大的动力学过程,且与气、液流量及筛板数密切相关;一定气量下,脉冲流的产生需要有一个最小(临界)液相流量,且增加液量可促进局部脉冲的产生,并使液相脉冲传播速度与频率均增大;临界液量之上,增大气量,气相的扰动作用增强,局部脉冲越容易产生,从而导致脉冲传播速度与频率均增大;进一步增大气量,液相脉冲会被逐渐分散,导致脉冲传播速度与脉冲频率均减小。增加筛板数,有利于增强脉冲流强度,从而导致脉冲流范围变宽,当筛板数少于三块时不会出现脉冲流。最后,基于实验结果分析,提出了脉冲传播速度及频率的预测关联式。
中图分类号:
郝仁杰, 谯敏, 黄卫星. 气-液并流通过堆叠筛板填料的脉冲流特性[J]. 化工学报, 2021, 72(3): 1314-1321.
HAO Renjie, QIAO Min, HUANG Weixing. Pulse flow characteristics of concurrent gas-liquid flow through a stacked sieve plate packing[J]. CIESC Journal, 2021, 72(3): 1314-1321.
d/mm | b/mm | l/mm | t/mm | φ/% | 筛板数量 |
---|---|---|---|---|---|
6 | 11 | 14 | 1 | 9.33 | 3、7、14、21、28 |
表1 筛板填料几何参数
Table 1 Sieve plate packing geometric parameters
d/mm | b/mm | l/mm | t/mm | φ/% | 筛板数量 |
---|---|---|---|---|---|
6 | 11 | 14 | 1 | 9.33 | 3、7、14、21、28 |
1 | Shi W D, Huang W X, Zhou Y H, et al. Hydrodynamics and pressure loss of concurrent gas-liquid downward flow through sieve plate packing[J]. Chemical Engineering Science, 2016, 143: 206-215. |
2 | 姜鹏, 王琨, 谯敏, 等. 气液两相并流下行通过堆叠筛板填料的压降特性[J]. 化工学报, 2018, 69(8): 3373-3382. |
Jiang P, Wang K, Qiao M, et al. Pressure drop of gas-liquid two phases parallelly flowing down through a stacked sieve plate packing[J]. CIESC Journal, 2018, 69(8): 3373-3382. | |
3 | Saroha A K, Khera R. Hydrodynamic study of fixed beds with cocurrent upflow and downflow[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(6): 455-460. |
4 | Beg S A, Hassan M M, Naqvi M S M. Hydrodynamics and mass transfer in a cocurrent packed column: a theoretical study[J]. Chemical Engineering Journal, 1996, 63: 93-103. |
5 | Jagadeesh Babu P E, Arunagiri A, Murugesan T. Prediction of two-phase pressure drop and liquid holdup in co-current gas-liquid downflow of air-Newtonian systems through packed beds[J]. Journal of Chemical Technology and Biotechnology, 2006, 81(1): 70-81. |
6 | Salgi P, Balakotaiah V. Impact of gravity on the bubble-to-pulse transition in packed beds[J]. AIChE Journal, 2014, 60(2): 778-793. |
7 | Grosser K, Carbonell R G, Sundaresan S. Onset of pulsing in two‐phase cocurrent downflow through a packed bed[J]. AIChE Journal, 1988, 34(11): 1850-1860. |
8 | 刘国柱, 米镇涛. 滴流床反应器的非定态操作[J]. 化工学报, 2006, 57(4): 757-761. |
Liu G Z, Mi Z T. Unsteady-state operation of trickle-bed reactor[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(4): 757-761. | |
9 | Zhao T, Eda T, Achyut S, et al. Investigation of pulsing flow regime transition and pulse characteristics in trickle-bed reactor by electrical resistance tomography[J]. Chemical Engineering Science, 2015, 130: 8-17. |
10 | Burghardt A, Bartelmus G, Szlemp A. Hydrodynamics of pulsing flow in three-phase fixed-bed reactor operating at an elevated pressure[J]. Industrial and Engineering Chemistry Research, 2004, 43(16): 4511-4521. |
11 | Huang X, Varma A, McCready M J. Heat transfer characterization of gas-liquid flows in a trickle-bed[J]. Chemical Engineering Science, 2004, 59(18): 3767-3776. |
12 | Giakoumakis D, Kostoglou M, Karabelas A J. Induced pulsing in trickle beds—characteristics and attenuation of pulses[J]. Chemical Engineering Science, 2005, 60(19): 5183-5197. |
13 | Zalucky J, Claußnitzer T, Schubert M, et al. Pulse flow in solid foam packed reactors: analysis of morphology and key characteristics[J]. Chemical Engineering Journal, 2017, 307: 339-352. |
14 | Boelhouwer J G, Piepers H W, Drinkenburg A A A H. Nature and characteristics of pulsing flow in trickle-bed reactors[J]. Chemical Engineering Science, 2002, 57(22): 4865-4876. |
15 | Lopes R J G, de Sousa V S L, Quinta-Ferreira R M. CFD and experimental studies of reactive pulsing flow in environmentally-based trickle-bed reactors[J]. Chemical Engineering Science, 2011, 66(14): 3280-3290. |
16 | Aydin B, Larachi F Ç. Trickle bed hydrodynamics and flow regime transition at elevated temperature for a Newtonian and a non-Newtonian liquid[J]. Chemical Engineering Science, 2005, 60(23): 6687-6701. |
17 | 程振民, 孔祥明, 曹鑫, 等. 涓流床反应器中流区过渡的气相渗透率表征[J]. 化工学报, 2010, 61(7): 1770-1776. |
Cheng Z M, Kong X M, Cao X, et al. Characterization of flow regime transition in trickle bed reactor by gas phase permeability[J]. CIESC Journal, 2010, 61(7): 1770-1776. | |
18 | Akramov T A, Stavarek P, Jiricny V, et al. Analysis of the conditions for the inception of natural pulsing flow in cocurrent packed columns[J]. Industrial and Engineering Chemistry Research, 2008, 47(19): 7424-7432. |
19 | 肖琼, Anter A M, 程振民, 等. 滴流床反应器内典型流型的特征与实验确定[J]. 华东理工大学学报, 2000, 26(1): 10-13. |
Xiao Q, Anter A M, Cheng Z M, et al. Characteristics of typical flow regimes in a trickle-bed reactor and experiment detecting[J]. Journal of East China University of Science and Technology, 2000, 26(1): 10-13. | |
20 | 刘国柱, 王莅, 王亚权, 等. 滴流床反应器中发泡流体的流型转变[J]. 化工学报, 2004, 55(5): 815-818. |
Liu G Z, Wang L, Wang Y Q, et al. Flow pattern transition of foaming system in trickle bed reactors [J]. Journal of Chemical Industry and Engineering(China), 2004, 55(5): 815-818. | |
21 | Al-Naimi S A, Al-Sudani F T J, Halabia E K. Hydrodynamics and flow regime transition study of trickle bed reactor at elevated temperature and pressure[J]. Chemical Engineering Research and Design, 2011, 89(7): 930-939. |
22 | Urseanu M I, Boelhouwer J G, Bosman H J M, et al. Estimation of trickle-to-pulse flow regime transition and pressure drop in high-pressure trickle bed reactors with organic liquids[J]. Chemical Engineering Journal, 2005, 111(1): 5-11. |
23 | Wang A, Marashdeh Q, Motil B J, et al. Electrical capacitance volume tomography for imaging of pulsating flows in a trickle bed[J]. Chemical Engineering Science, 2014, 119: 77-87. |
24 | Bartelmus G, Gancarczyk A, Stasiak M. Hydrodynamics of cocurrent fixed-bed three-phase reactors (Ⅰ): The effect of physicochemical properties of the liquid on pulse velocity[J]. Chemical Engineering and Processing: Process Intensification, 1998, 37(4): 331-341. |
25 | Zapico R R, Marín P, Díez F V, et al. Liquid hold-up and gas-liquid mass transfer in an alumina open-cell foam[J]. Chemical Engineering Science, 2016, 143: 297-304. |
26 | Son Y, Won W. Liquid holdup and pressure drop in packed column with structured packing under offshore conditions[J]. Chemical Engineering Science, 2019, 195: 894-903. |
27 | Attou A, Boyer C, Ferschneider G. Modelling of the hydrodynamics of the cocurrent gas-liquid trickle flow through a trickle-bed reactor[J]. Chemical Engineering Science, 1999, 54(6): 785-802. |
28 | Christensen G, McGovern S J, Sundaresan S. Cocurrent downflow of air and water in a two-dimensional packed column[J]. AIChE Journal, 1986, 32(10): 1677-1689. |
29 | Tsochatzidis N A, Karabelas A J. Properties of pulsing flow in a trickle bed[J]. AIChE Journal, 1995, 41(11): 2371-2382. |
30 | 肖琼, 程振民, Anter A M, 等. 滴流床反应器内脉冲流宏观流体力学的特性参数[J]. 化工学报, 2001, 52(1): 72-75. |
Xiao Q, Cheng Z M, Anter A M, et al. Hydrodynamic characteristic properties under pulsing flow regime. [J]. Journal of Chemical Industry and Engineering(China), 2001, 52(1): 72-75. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[5] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[6] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[9] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[10] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[11] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[12] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
[13] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[14] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[15] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||