化工学报 ›› 2021, Vol. 72 ›› Issue (2): 956-964.DOI: 10.11949/0438-1157.20201128
徐祥贵1,2(),王丽琼1,王君雷2,3,王燕2,3,黄巧2,3,黄云2,3()
收稿日期:
2020-08-10
修回日期:
2020-09-22
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
黄云
作者简介:
徐祥贵(1996—),男,硕士研究生,基金资助:
XU Xianggui1,2(),WANG Liqiong1,WANG Junlei2,3,WANG Yan2,3,HUANG Qiao2,3,HUANG Yun2,3()
Received:
2020-08-10
Revised:
2020-09-22
Online:
2021-02-05
Published:
2021-02-05
Contact:
HUANG Yun
摘要:
以石蜡作为相变材料(PCM),采用六面通圆孔三维结构模型,对泡沫金属复合PCM内相变熔化过程进行了数值模拟。研究了不同材料(Cu、Al、Ni、Fe)泡沫金属孔密度和孔隙率对复合PCM传热和储热性能的影响。结果表明,泡沫金属复合PCM传热过程受热传导和自然对流作用综合影响;随孔密度增加,复合PCM完全熔化时间缩短幅度逐渐减小,且泡沫金属热导率越高,孔密度对传热速率影响越大;泡沫金属复合PCM内存在非热平衡现象,孔密度和孔隙率增加均可减小最大平均温差,但对最终平衡时间的影响却截然不同;此外,泡沫金属复合PCM单位质量储热密度随孔隙率增大而增大,相比泡沫Cu、Ni、Fe复合PCM,泡沫Al复合PCM的单位质量储热密度较大,增加速率也较大。
中图分类号:
徐祥贵, 王丽琼, 王君雷, 王燕, 黄巧, 黄云. 泡沫金属复合PCM微结构传热储热过程模拟[J]. 化工学报, 2021, 72(2): 956-964.
XU Xianggui, WANG Liqiong, WANG Junlei, WANG Yan, HUANG Qiao, HUANG Yun. Simulation on heat transfer and thermal storage processes of foamed metal composite PCM microstructure[J]. CIESC Journal, 2021, 72(2): 956-964.
密度ρ/ (kg·m-3) | 热导率k/ (W·m-1·K-1) | 比热容cp/ (kJ·kg-1·K-1) | 潜热L/ (kJ·kg-1) | 黏度μ/ (kg·m-1·s-1) | 热膨胀系数 β/K-1 | 固相温度 Ts/K | 液相温度 Tl/K |
---|---|---|---|---|---|---|---|
840 | 0.17 | 1.851 | 87.13 | 0.003 | 0.0004 | 328.15 | 338.85 |
表1 石蜡物性参数
Table 1 Physical parameters of paraffin
密度ρ/ (kg·m-3) | 热导率k/ (W·m-1·K-1) | 比热容cp/ (kJ·kg-1·K-1) | 潜热L/ (kJ·kg-1) | 黏度μ/ (kg·m-1·s-1) | 热膨胀系数 β/K-1 | 固相温度 Ts/K | 液相温度 Tl/K |
---|---|---|---|---|---|---|---|
840 | 0.17 | 1.851 | 87.13 | 0.003 | 0.0004 | 328.15 | 338.85 |
金属 | 密度ρ/(kg·m-3) | 热导率k/ (W·m-1·K-1) | 比热容cp/ (kJ·kg-1·K-1) |
---|---|---|---|
铜 | 8960 | 398 | 0.386 |
铝 | 2702 | 218 | 0.905 |
镍 | 8902 | 90.5 | 0.447 |
铁 | 7900 | 80.3 | 0.442 |
表2 泡沫金属物性参数
Table 2 Physical properties of metallic foam
金属 | 密度ρ/(kg·m-3) | 热导率k/ (W·m-1·K-1) | 比热容cp/ (kJ·kg-1·K-1) |
---|---|---|---|
铜 | 8960 | 398 | 0.386 |
铝 | 2702 | 218 | 0.905 |
镍 | 8902 | 90.5 | 0.447 |
铁 | 7900 | 80.3 | 0.442 |
图7 纯石蜡与泡沫Al复合PCM内石蜡液相分数为20%、50%、80%时的温度比较
Fig.7 Temperature comparison between pure paraffin and paraffin wax inside foam Al composite PCM at 20%, 50% and 80% liquid fraction
1 | Kılıçkap S, El E, Yıldız C. Investigation of the effect on the efficiency of phase change material placed in solar collector tank[J]. Thermal Science and Engineering Progress, 2018, 5: 25-31. |
2 | Pandey A K, Hossain M S, Tyagi V V, et al. Novel approaches and recent developments on potential applications of phase change materials in solar energy[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 281-323. |
3 | Winfred R D D, Iniyan S, Suganthi L, et al. Nanoparticles enhanced phase change material (NPCM) as heat storage in solar still application for productivity enhancement[J]. Energy Procedia, 2017, 141: 45-49. |
4 | Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phase change materials and applications[J]. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318-345. |
5 | Zhou D, Eames P. Thermal characterisation of binary sodium/lithium nitrate salts for latent heat storage at medium temperatures[J]. Solar Energy Materials and Solar Cells, 2016, 157: 1019-1025. |
6 | Ibrahim N I, Al-Sulaiman F A, Rahman S, et al. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 26-50. |
7 | Zalba B, Marı́n J M, Cabeza L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. |
8 | Agyenim F, Hewitt N, Eames P, et al. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)[J]. Renewable and Sustainable Energy Reviews, 2010, 14(2): 615-628. |
9 | Khan Z, Khan Z, Ghafoor A. A review of performance enhancement of PCM based latent heat storage system within the context of materials, thermal stability and compatibility[J]. Energy Conversion and Management, 2016, 115: 132-158. |
10 | Wang P L, Yao H, Lan Z P, et al. Numerical investigation of PCM melting process in sleeve tube with internal fins[J]. Energy Conversion and Management, 2016, 110: 428-435. |
11 | Alva G, Lin Y X, Fang G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. |
12 | Mettawee E-B S, Assassa G M R. Thermal conductivity enhancement in a latent heat storage system[J]. Solar Energy, 2007, 81(7): 839-845. |
13 | Nayak K C, Saha S K, Srinivasan K, et al. A numerical model for heat sinks with phase change materials and thermal conductivity enhancers[J]. International Journal of Heat and Mass Transfer, 2006, 49(11/12): 1833-1844. |
14 | Nazir H, Batool M, Bolivar O F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
15 | Tao Y B, He Y L. A review of phase change material and performance enhancement method for latent heat storage system[J]. Renewable and Sustainable Energy Reviews, 2018, 93: 245-259. |
16 | Han G S, Ding H S, Huang Y, et al. A comparative study on the performances of different shell-and-tube type latent heat thermal energy storage units including the effects of natural convection[J]. International Communications in Heat and Mass Transfer, 2017, 88: 228-235. |
17 | Shang B F, Hu J Y, Hu R, et al. Modularized thermal storage unit of metal foam/paraffin composite[J]. International Journal of Heat and Mass Transfer, 2018, 125: 596-603. |
18 | Zhang N, Yuan Y P, Cao X L, et al. Latent heat thermal energy storage systems with solid-liquid phase change materials: a review[J]. Advanced Engineering Materials, 2018, 20(6): 1700753. |
19 | Chen J Q, Yang D H, Jiang J H, et al. Research progress of phase change materials (PCMs) embedded with metal foam (a review)[J]. Procedia Materials Science, 2014, 4: 389-394. |
20 | Wu S F, Yan T, Kuai Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: a review[J]. Energy Storage Materials, 2020, 25: 251-295. |
21 | 魏梦丽, 禹森, 叶潇强. 选择泡沫金属,石蜡制作复合相变材料[J]. 科技视界, 2019, (10): 179-180. |
Wei M L, Yu S, Ye X Q. Selection of foam metal and paraffin for composite phase change materials[J]. Science & Technology Vision, 2019, (10): 179-180. | |
22 | Zhou D, Zhao C Y. Experimental investigations on heat transfer in phase change materials (PCMs) embedded in porous materials[J]. Applied Thermal Engineering, 2011, 31(5): 970-977. |
23 | Wang Z, Zhang Z, Jia L, et al. Paraffin and paraffin/aluminum foam composite phase change material heat storage experimental study based on thermal management of Li-ion battery[J]. Applied Thermal Engineering, 2015, 78: 428-436. |
24 | Zhao C Y, Lu W, Tian Y. Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs)[J]. Solar Energy, 2010, 84(8): 1402-1412. |
25 | Zhang Z Q, He X D. Three-dimensional numerical study on solid-liquid phase change within open-celled aluminum foam with porosity gradient[J]. Applied Thermal Engineering, 2017, 113: 298-308. |
26 | Sundarram S S, Li W. The effect of pore size and porosity on thermal management performance of phase change material infiltrated microcellular metal foams[J]. Applied Thermal Engineering, 2014, 64(1/2): 147-154. |
27 | Wang G, Wei G S, Xu C, et al. Numerical simulation of effective thermal conductivity and pore-scale melting process of PCMs in foam metals[J]. Applied Thermal Engineering, 2019, 147: 464-472. |
28 | Gao D Y, Chen Z Q, Shi M H, et al. Study on the melting process of phase change materials in metal foams using lattice Boltzmann method[J]. Science China-Technological Sciences, 2010, 53(11): 3079-3087. |
29 | Li W Q, Qu Z G, He Y L, et al. Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin[J]. Applied Thermal Engineering, 2012, 37: 1-9. |
30 | 黄媛媛, 周帼彦, 王俊涛, 等. 泡沫金属结构内流体流动与传热性能数值模拟[J]. 化学工程, 2015, 43(9): 16-20. |
Huang Y Y, Zhou G Y, Wang J T, et al. Numerical simulation on fluid flow and heat transfer performance of metal-foam structures[J]. Chemical Engineering(China), 2015, 43(9): 16-20. | |
31 | Hu X S, Gong X L. Pore-scale numerical simulation of the thermal performance for phase change material embedded in metal foam with cubic periodic cell structure[J]. Applied Thermal Engineering, 2019, 151: 231-239. |
32 | Feng S S, Shi M, Li Y F, et al. Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam[J]. International Journal of Heat and Mass Transfer, 2015, 90: 838-847. |
33 | Tao Y B, You Y, He Y L. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material[J]. Applied Thermal Engineering, 2016, 93: 476-485. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 张双星, 刘舫辰, 张义飞, 杜文静. R-134a脉动热管相变蓄放热实验研究[J]. 化工学报, 2023, 74(S1): 165-171. |
[6] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[7] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[8] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[9] | 吴延鹏, 刘乾隆, 田东民, 陈凤君. 相变材料与热管耦合的电子器件热管理研究进展[J]. 化工学报, 2023, 74(S1): 25-31. |
[10] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[13] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[14] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[15] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||