化工学报 ›› 2020, Vol. 71 ›› Issue (S2): 70-79.DOI: 10.11949/0438-1157.20200471
收稿日期:
2020-05-05
修回日期:
2020-06-09
出版日期:
2020-11-06
发布日期:
2020-11-06
通讯作者:
张井志
作者简介:
张井志(1989—),男,博士,助理研究员,基金资助:
Jingzhi ZHANG1,2(),Naixiang ZHOU3,Guanmin ZHANG1,Maocheng TIAN1
Received:
2020-05-05
Revised:
2020-06-09
Online:
2020-11-06
Published:
2020-11-06
Contact:
Jingzhi ZHANG
摘要:
微细通道内Taylor流动广泛应用于能源化工领域,为分析其相界面及阻力特性,利用相对坐标系的方法,研究了竖直圆管及扁平管内的液-液Taylor流动,讨论了通道宽高比、Reynolds数(Re)及分散相体积分数对液膜厚度和两相压降的影响。结果表明:圆管内液滴头部和尾部可以膨胀至近似球形,而扁平管内壁面的限制作用较强,液滴呈现扁平状。随Reynolds数增大,两相界面逐渐收缩,液膜厚度逐渐上升。圆管内液膜厚度比较均匀,扁平管内液膜在通道顶部较薄,而圆弧部分较厚。两相压降随Re和宽高比的增大而增大,随分散相体积分数的增大而降低。相比连续相和分散相压降,界面压降所占的比重最高,并依据模拟结果,提出了圆管及扁平管内液-液Taylor流动的压降预测公式。
中图分类号:
张井志, 周乃香, 张冠敏, 田茂诚. 微细圆管及扁平管内液-液Taylor流动特性的数值研究[J]. 化工学报, 2020, 71(S2): 70-79.
Jingzhi ZHANG, Naixiang ZHOU, Guanmin ZHANG, Maocheng TIAN. Flow characteristics of liquid-liquid Taylor flow in mini channels with circular and flat cross-sections: a numerical study[J]. CIESC Journal, 2020, 71(S2): 70-79.
管道 | 宽高比 | W/mm | H/mm | Pw /mm | dh/mm |
---|---|---|---|---|---|
圆管(AR0) | — | — | — | 6.28 | 2.00 |
扁平管(AR1) | 1 | 1.22 | 1.22 | 6.28 | 1.70 |
扁平管(AR2) | 2 | 1.76 | 0.88 | 6.28 | 1.37 |
表1 通道结构参数
Table 1 Geometrical parameters of investigated channels
管道 | 宽高比 | W/mm | H/mm | Pw /mm | dh/mm |
---|---|---|---|---|---|
圆管(AR0) | — | — | — | 6.28 | 2.00 |
扁平管(AR1) | 1 | 1.22 | 1.22 | 6.28 | 1.70 |
扁平管(AR2) | 2 | 1.76 | 0.88 | 6.28 | 1.37 |
Variable | Methods |
---|---|
VOF scheme | Explicit |
pressure–velocity coupling | Fractional Step |
gradients | Green-Gauss node based |
pressure | Body Force Weighted |
volume fraction | Geo-Reconstruct |
momentum | Second Order Upwind |
表2 计算方法及离散格式
Table 2 Solution method and discretization scheme
Variable | Methods |
---|---|
VOF scheme | Explicit |
pressure–velocity coupling | Fractional Step |
gradients | Green-Gauss node based |
pressure | Body Force Weighted |
volume fraction | Geo-Reconstruct |
momentum | Second Order Upwind |
Authors | ?pc | ?pd | ?pI | C | MAD/% | ||
---|---|---|---|---|---|---|---|
AR0 | AR1 | AR2 | |||||
Jovanovi?等[ | 14.89 | 4.9 | 13.6 | 12.1 | |||
?adosz等[ | 7.106 | 29.3 | 33.1 | 31.4 | |||
Yue等[ | 32 | 62.3 | 41.7 | 40.8 | |||
本研究 | AR0: 14.89 AR1: 17.58 AR2: 16.54 | 5.0 | 5.1 | 2.2 |
表3 两相压降预测公式
Table 3 Correlations for two-phase pressure drops
Authors | ?pc | ?pd | ?pI | C | MAD/% | ||
---|---|---|---|---|---|---|---|
AR0 | AR1 | AR2 | |||||
Jovanovi?等[ | 14.89 | 4.9 | 13.6 | 12.1 | |||
?adosz等[ | 7.106 | 29.3 | 33.1 | 31.4 | |||
Yue等[ | 32 | 62.3 | 41.7 | 40.8 | |||
本研究 | AR0: 14.89 AR1: 17.58 AR2: 16.54 | 5.0 | 5.1 | 2.2 |
1 | 张井志, 李蔚. 毛细管内气液Taylor流动的气泡及阻力特性[J]. 化工学报, 2015, 66(3): 942-948. |
Zhang J Z, Li W. Bubble and frictional characteristics of gas-liquid Taylor flow in capillary tube [J]. CIESC Journal, 2015, 66(3): 942-948. | |
2 | Yao C Q, Zheng J, Zhao Y C, et al. Characteristics of gas-liquid Taylor flow with different liquid viscosities in a rectangular microchannel [J]. Chemical Engineering Journal, 2019, 373: 437-445. |
3 | Zhang J Z, Li W. Thermal and flow characteristics of water-nitrogen Taylor flow inside vertical circular tubes [J]. Journal of Heat Transfer, 2018, 140(8): 082004. |
4 | 高超, 朱志冰, 李海旺. 宽高比及表面粗糙度对矩形微尺度通道流动特性的影响[J]. 航空动力学报, 2018, 33(5): 158-162. |
Gao C, Zhu Z B, Li H W. Influence of aspect ratio and roughness on flow behavior in rectangle microchannels [J]. Journal of Aerospace Power, 2018, 33(5): 158-162. | |
5 | Zhang J Z, Lei L, Liang F S, et al. An improved method to visualize two regions of interest synchronously in microfluidics [J]. Flow Measurement and Instrumentation, 2020, 72: 101715. |
6 | 周乃香, 张井志, 林金品, 等. 毛细管内气-液Taylor流动换热特性数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1859-1864. |
Zhou N X, Zhang J Z, Lin J P, et al. Numerical investigation on heat and hydrodynamic chracteristics of gas-liquid Taylor flow in capillaries [J]. Journal of Zhejiang University (Engineering Science), 2016, 50(10): 1859-1864. | |
7 | Wang K, Qin K, Lü Y C, et al. Gas/liquid/liquid three-phase flow patterns and bubble/droplet size laws in a double T-junction microchannel [J]. AIChE Journal, 2015, 61(5): 1722-1734. |
8 | Zhang J Z, Fletcher D F, Li W. Heat transfer and pressure drop characteristics of gas-liquid Taylor flow in mini ducts of square and rectangular cross-sections [J]. International Journal of Heat and Mass Transfer, 2016, 103: 45-56. |
9 | 杨敏, 曹炳阳. 微纳通道中牛顿流体毛细流动的研究进展[J]. 科学通报, 2016, 61(14): 1574-1584. |
Yang M, Cao B Y. Advances of capillary filling of Newtonian fluids in micro- and nanochannels [J]. Chin. Sci. Bull., 2016, 61(14): 1574-1584. | |
10 | 张皓, 王凯. 基于显微图像识别的微流控液滴聚并研究[J]. 化工学报, 2020, 71(2): 526-534. |
Zhang H, Wang K. Microfluidic droplet coalescence study via microscopic image recognition [J]. CIESC Journal, 2020, 71(2): 526-534. | |
11 | 周灏, 朱春英, 付涛涛, 等. 三维孔喉结构微通道内液滴的破裂行为研究[J]. 化工学报, 2019, 70(10): 3924-3931. |
Zhou H, Zhu C Y, Fu T T, et al. Study on droplet breakup behaviors in 3-D pore-throat microchannel [J]. CIESC Journal, 2019, 70(10): 3924-3931. | |
12 | 尧超群, 陈光文, 袁权. 微通道内气-液两相传质过程行为及其应用[J]. 化工学报, 2019, 70(10): 3635-3644. |
Yao C Q, Chen G W, Yuan Q. Mass transfer characteristics of gas-liquid two-phase flow in microchannels and applications [J]. CIESC Journal, 2019, 70(10): 3635-3644. | |
13 | Guo R W, Fu T T, Zhu C Y, et al. Flow distribution and mass transfer of gas-liquid flow in parallel microchannels with different tree-shaped distributors: halving-width versus constant-width [J]. Industrial & Engineering Chemistry Research, 2020, 59(3): 1327-1335. |
14 | 严润刚, 潘良明, 何辉, 等. 多微通道内两相流动阻力特性及气泡行为[J]. 化工学报, 2017, 68: 66-70. |
Yan R G, Pan L M, He H, et al. Characterisitics of two-phase flow resistance and bubble behavior in microchannels [J]. CIESC Journal, 2017, 68: 66-70. | |
15 | Cao Z, Wu Z, Sundén B. Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels [J]. Chemical Engineering Journal, 2018, 344: 604-615. |
16 | 钱锦远, 李晓娟, 吴赞, 等. 微通道内液-液两相流流型及传质的研究进展[J]. 化工进展, 2019, 38(4): 1624-1633. |
Qian J Y, Li X J, Wu Z, et al. Research progress on flow regimes and mass transfer of liquid-liquid two-phase flow in microchannels [J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1624-1633. | |
17 | Aussillous P, Quéré D. Quick deposition of a fluid on the wall of a tube [J]. Physics of Fluids, 2000, 12(10): 2367-2371. |
18 | Han Y, Shikazono N. Measurement of liquid film thickness in micro square channel [J]. International Journal of Multiphase Flow, 2009, 35(10): 896-903. |
19 | Han Y, Shikazono N. Measurement of the liquid film thickness in micro tube slug flow [J]. International Journal of Heat and Fluid Flow, 2009, 30(5): 842-853. |
20 | 梁倩卿, 马学虎, 王凯, 等. 矩形截面弯曲型微通道气液两相Taylor流压降的研究[J]. 化工学报, 2019, 70(4): 1272-1281. |
Liang Q Q, Ma X H, Wang K, et al. Gas-liquid Taylor flow pressure drop in rectangular meandering microchannel [J]. CIESC Journal, 2019, 70(4): 1272-1281. | |
21 | Kreutzer M T, Kapteijn F, Moulijn J A, et al. Inertial and interfacial effects on pressure drop of Taylor flow in capillaries [J]. AIChE Journal, 2005, 51(9): 2428-2440. |
22 | Walsh E, Muzychka Y, Walsh P, et al. Pressure drop in two-phase slug/bubble flows in mini scale capillaries [J]. International Journal of Multiphase Flow, 2009, 35(10): 879-884. |
23 | Jovanović J, Zhou W Y, Rebrov E V, et al. Liquid-liquid slug flow: hydrodynamics and pressure drop [J]. Chemical Engineering Science, 2011, 66(1): 42-54. |
24 | Ładosz A, von Rohr P R. Pressure drop of two-phase liquid-liquid slug flow in square microchannels [J]. Chemical Engineering Science, 2018, 191: 398-409. |
25 | Wong H, Radke C J, Morris S. The motion of long bubbles in polygonal capillaries (Ⅱ): Drag, fluid pressure and fluid flow [J]. Journal of Fluid Mechanics, 1995, 292: 95-110. |
26 | Che Z Z, Wong T N, Nguyen N T, et al. Three dimensional features of convective heat transfer in droplet-based microchannel heat sinks [J]. International Journal of Heat and Mass Transfer, 2015, 86: 455-464. |
27 | Dai Z H, Guo Z Y, Fletcher D F, et al. Taylor flow heat transfer in microchannels — unification of liquid-liquid and gas-liquid results [J]. Chemical Engineering Science, 2015, 138: 140-152. |
28 | Yue J J, Rebrov E V, Schouten J C. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas-liquid/liquid-liquid flows [J]. Lab on a Chip, 2014, 14(9): 1632-1649. |
29 | Bahrami M, Yovanovich M M, Culham J R. A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section [J]. International Journal of Heat and Mass Transfer, 2007, 50(13): 2492-2502. |
30 | Bretherton F. The motion of long bubbles in tubes [J]. Journal of Fluid Mechanics, 1961, 10(2): 166-188. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[6] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[10] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[11] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[14] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[15] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||