化工学报 ›› 2021, Vol. 72 ›› Issue (5): 2626-2637.DOI: 10.11949/0438-1157.20210192
收稿日期:
2021-01-31
修回日期:
2021-03-22
出版日期:
2021-05-05
发布日期:
2021-05-05
通讯作者:
王庆法
作者简介:
李晓雪(1997—),女,硕士研究生,基金资助:
LI Xiaoxue1,2(),NIU Xiaopo1,2,WANG Qingfa1,2()
Received:
2021-01-31
Revised:
2021-03-22
Online:
2021-05-05
Published:
2021-05-05
Contact:
WANG Qingfa
摘要:
利用等体积共浸渍法制备了级孔ZSM-5分子筛负载Pt-Ni双金属催化剂,并系统研究了不同Pt/Ni比对愈创木酚和二苯并呋喃二元混合物加氢脱氧反应性能的影响。采用XRD、N2-BET、SEM、TEM和H2-TPR对Pt-Ni催化剂的形貌和结构进行了表征。Ni掺入量较少时(1%和3%,质量分数),有利于促进活性金属的分散,增强Pt-Ni双金属之间的协同作用;当Ni掺入量增加到5%时,活性金属出现较严重的团聚。二元混合物加氢脱氧实验结果表明与单金属Pt/HZ-75相比,双金属Pt-Ni/ZSM-5催化剂均表现出优异的加氢脱氧催化活性,Ni的引入显著提高了反应转化速率,并提高了产物中联环己烷的选择性。随着Pt/Ni比的降低,Pt-Ni催化剂的活性逐渐增加,而联环己烷选择性先升高后降低。Pt-3Ni/HZ-75催化剂在3 MPa、260℃下表现出最佳的催化活性和联环己烷选择性,反应4 h后转化率达到100%,联环己烷选择性达到43%。
中图分类号:
李晓雪, 牛晓坡, 王庆法. 级孔Pt-Ni/ZSM-5对木质素衍生物加氢脱氧性能研究[J]. 化工学报, 2021, 72(5): 2626-2637.
LI Xiaoxue, NIU Xiaopo, WANG Qingfa. Study on hydrodeoxygenation performance of hierarchical Pt-Ni/ZSM-5 for lignin derivatives[J]. CIESC Journal, 2021, 72(5): 2626-2637.
催化剂 | SBET/(m2/g) | Smeso/ext/(m2/g) | Vtotal/(cm3/g) |
---|---|---|---|
Pt-Ni/HZ-75 | 522.1 | 365.2 | 0.3254 |
Pt-3Ni/HZ-75 | 511.6 | 345.1 | 0.3048 |
Pt-5Ni/HZ-75 | 508.5 | 309.9 | 0.2655 |
表1 不同催化剂的比表面积和孔结构性质
Table 1 Specific surface area and pore structure properties of different catalysts
催化剂 | SBET/(m2/g) | Smeso/ext/(m2/g) | Vtotal/(cm3/g) |
---|---|---|---|
Pt-Ni/HZ-75 | 522.1 | 365.2 | 0.3254 |
Pt-3Ni/HZ-75 | 511.6 | 345.1 | 0.3048 |
Pt-5Ni/HZ-75 | 508.5 | 309.9 | 0.2655 |
1 | Kumar R, Strezov V. Thermochemical production of bio-oil: a review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110152. |
2 | Oh S, Lee J H, Choi I G, et al. Enhancement of bio-oil hydrodeoxygenation activity over Ni-based bimetallic catalysts supported on SBA-15[J]. Renewable Energy, 2020, 149: 1-10. |
3 |
Dasari K K, Gumtapure V, Dutta S. Upgrading of coconut shell-derived pyrolytic bio-oil by thermal and catalytic deoxygenation[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. DOI:10.1080/15567036.2019.1711465.
DOI |
4 | 石宁, 唐文勇, 唐石云, 等. 木质纤维素衍生平台化学品制备液态烷烃的研究进展[J]. 化工进展, 2019, 38(7): 3097-3110. |
Shi N, Tang W Y, Tang S Y, et al. Advances in the catalytic conversion of lignocellulosic derived platform chemicals into liquid alkanes[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3097-3110. | |
5 | 陈善帅, 路之纤, 卢奇棋, 等. 生物质制备航空燃油级烷烃的研究进展[J]. 中国农业大学学报, 2019, 24(9): 1-9. |
Chen S S, Lu Z X, Lu Q Q, et al. Research progress on the conversion of biomass to jet fuel ranged hydrocarbons[J]. Journal of China Agricultural University, 2019, 24(9): 1-9. | |
6 |
Li Z Y, Yi W M, Li Z H, et al. Hydrodeoxygenation of bio-oil and model compounds for production of chemical materials at atmospheric pressure over nickel-based zeolite catalysts[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. DOI: 10.1080/15567036.2020.1765901.
DOI |
7 | Yan P H, Bryant G, Li M M J, et al. Shape selectivity of zeolite catalysts for the hydrodeoxygenation of biocrude oil and its model compounds[J]. Microporous and Mesoporous Materials, 2020, 309: 110561. |
8 | Wang Y X, He T, Liu K T, et al. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: Hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis[J]. Bioresource Technology, 2012, 108: 280-284. |
9 | Hita I, Cordero-Lanzac T, Bonura G, et al. Dynamics of carbon formation during the catalytic hydrodeoxygenation of raw bio-oil[J]. Sustainable Energy & Fuels, 2020, 4(11): 5503-5512. |
10 | Shu R Y, Lin B Q, Zhang J T, et al. Efficient catalytic hydrodeoxygenation of phenolic compounds and bio-oil over highly dispersed Ru/TiO2[J]. Fuel Processing Technology, 2019, 184: 12-18. |
11 | Yan P H, Li M M J, Kennedy E, et al. The role of acid and metal sites in hydrodeoxygenation of guaiacol over Ni/Beta catalysts[J]. Catalysis Science & Technology, 2020, 10(3): 810-825. |
12 | Niu X P, Feng F X, Yuan G, et al. Hollow MFI zeolite supported Pt catalysts for highly selective and stable hydrodeoxygenation of guaiacol to cycloalkanes[J]. Nanomaterials, 2019, 9(3): E362. |
13 | Li W L, Wang H Y, Wu X Z, et al. Ni/hierarchical ZSM-5 zeolites as promising systems for phenolic bio-oil upgrading: guaiacol hydrodeoxygenation[J]. Fuel, 2020, 274: 117859. |
14 | Zhang J, Zhao C C, Li C, et al. The role of oxophilic Mo species in Pt/MgO catalysts as extremely active sites for enhanced hydrodeoxygenation of dibenzofuran[J]. Catalysis Science & Technology, 2020, 10(9): 2948-2960. |
15 | Zhang J, Li C, Guan W X, et al. Deactivation and regeneration study of a Co-promoted MoO3 catalyst in hydrogenolysis of dibenzofuran[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4313-4321. |
16 | Zhang J, Li C, Guan W X, et al. Promotional effect of Co and Ni on MoO3 catalysts for hydrogenolysis of dibenzofuran to biphenyl under atmospheric hydrogen pressure[J]. Journal of Catalysis, 2020, 383: 311-321. |
17 | Salakhum S, Saenluang K, Wattanakit C. Stability of monometallic Pt and Ru supported on hierarchical HZSM-5 nanosheets for hydrodeoxygenation of lignin-derived compounds in the aqueous phase[J]. Sustainable Energy & Fuels, 2020, 4(3): 1126-1134. |
18 | 史延强, 陈帅, 孙立杰, 等. 碱处理对ZSM-5分子筛多级孔道结构和扩散性能的影响[J]. 石油学报(石油加工), 2021, 37(1): 176-180. |
Shi Y Q, Chen S, Sun L J, et al. Impact of alkali treatment on hierarchical pore structure and diffusion properties of ZSM-5 zeolites[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(1): 176-180. | |
19 | 陈庭胜, 杜朕屹. 多级孔ZSM-5分子筛催化异丙基苯酚脱烷基反应研究[J]. 现代化工, 2020, 40(S1): 92-97. |
Chen T S, Du Z Y. Study on dealkylation of isopropylphenol to make phenol over ZSM-5 molecular sieves with hierarchical pore structure[J]. Modern Chemical Industry, 2020, 40(S1): 92-97. | |
20 | 卢美贞, 李永强, 刘学军, 等. Pt/MCM-41加氢裂化制备航空生物煤油[J]. 中国粮油学报, 2016, 31(12): 67-71, 78. |
Lu M Z, Li Y Q, Liu X J, et al. Research on hydrocracking for production of bio jet kerosene by Pt/MCM-41 catalysts[J]. Journal of the Chinese Cereals and Oils Association, 2016, 31(12): 67-71, 78. | |
21 | Zhao Y P, Wu F P, Song Q L, et al. Hydrodeoxygenation of lignin model compounds to alkanes over Pd-Ni/HZSM-5 catalysts[J]. Journal of the Energy Institute, 2020, 93(3): 899-910. |
22 | Szczyglewska P, Feliczak-Guzik A, Nowak I. A support effect on the hydrodeoxygenation reaction of anisole by ruthenium catalysts[J]. Microporous and Mesoporous Materials, 2020, 293: 109771. |
23 | Yan P H, Mensah J, Adesina A, et al. Highly-dispersed Ni on BEA catalyst prepared by ion-exchange-deposition-precipitation for improved hydrodeoxygenation activity[J]. Applied Catalysis B: Environmental, 2020, 267: 118690. |
24 | 赵云鹏, 赵薇, 司兴刚, 等. Co@C催化木质素衍生酚类化合物的加氢转化[J]. 燃料化学学报, 2021, 49(1): 55-62. |
Zhao Y P, Zhao W, Si X G, et al. Hydrogenation of lignin-derived phenolic compounds over Co@C catalysts[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 55-62. | |
25 | Veses A, Puértolas B, López J M, et al. Promoting deoxygenation of bio-oil by metal-loaded hierarchical ZSM-5 zeolites[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1653-1660. |
26 | Zhang X, Wang K G, Chen J H, et al. Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt-Ni bimetal-based catalysts[J]. Applied Energy, 2020, 275: 115154. |
27 | Choi M, Cho H S, Srivastava R, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity[J]. Nature Materials, 2006, 5(9): 718-723. |
28 | Koekkoek A J J, Tempelman C H L, Degirmenci V, et al. Hierarchical zeolites prepared by organosilane templating: a study of the synthesis mechanism and catalytic activity[J]. Catalysis Today, 2011, 168(1): 96-111. |
29 | Niu X P, Li X X, Yuan G, et al. Hollow hierarchical silicalite-1 zeolite encapsulated PtNi bimetals for selective hydroconversion of methyl stearate into aviation fuel range alkanes[J]. Industrial & Engineering Chemistry Research, 2020, 59(18): 8601-8611. |
30 | Feng F X, Wang L, Zhang X W, et al. Self-pillared ZSM-5-supported Ni nanoparticles as an efficient catalyst for upgrading oleic acid to aviation-fuel-range-alkanes[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13112-13121. |
31 | Wang S Y, Tian R, He B, et al. The success of dual-functional templating for synthesizing hierarchical analcime zeolite[J]. Applied Organometallic Chemistry, 2019, 33(4): e4711. |
32 | Tarach K A, Tekla J, Makowski W, et al. Catalytic dehydration of ethanol over hierarchical ZSM-5 zeolites: studies of their acidity and porosity properties[J]. Catalysis Science & Technology, 2016, 6(10): 3568-3584. |
33 | Liang G F, He L M, Arai M, et al. The Pt-enriched PtNi alloy surface and its excellent catalytic performance in hydrolytic hydrogenation of cellulose[J]. ChemSusChem, 2014, 7(5): 1415-1421. |
34 | Ambursa M M, Ali T H, Lee H V, et al. Hydrodeoxygenation of dibenzofuran to bicyclic hydrocarbons using bimetallic Cu-Ni catalysts supported on metal oxides[J]. Fuel, 2016, 180: 767-776. |
35 | Parrilla-Lahoz S, Jin W, Pastor-Pérez L, et al. Guaiacol hydrodeoxygenation in hydrothermal conditions using N-doped reduced graphene oxide (RGO) supported Pt and Ni catalysts: seeking for economically viable biomass upgrading alternatives[J]. Applied Catalysis A: General, 2021, 611: 117977. |
36 | Lu M H, Jiang Y J, Sun Y, et al. Hydrodeoxygenation of guaiacol catalyzed by ZrO2-CeO2-supported nickel catalysts with high loading[J]. Energy & Fuels, 2020, 34(4): 4685-4692. |
37 | de Miguel S R, Vilella I M J, Maina S P, et al. Influence of Pt addition to Ni catalysts on the catalytic performance for long term dry reforming of methane[J]. Applied Catalysis A: General, 2012, 435/436: 10-18. |
38 | Luo Z C, Zheng Z X, Li L, et al. Bimetallic Ru-Ni catalyzed aqueous-phase guaiacol hydrogenolysis at low H2 pressures[J]. ACS Catalysis, 2017, 7(12): 8304-8313. |
39 | Tanksale A, Beltramini J N, Dumesic J A, et al. Effect of Pt and Pd promoter on Ni supported catalysts—a TPR/TPO/TPD and microcalorimetry study[J]. Journal of Catalysis, 2008, 258(2): 366-377. |
40 | Li B T, Kado S, Mukainakano Y, et al. Surface modification of Ni catalysts with trace Pt for oxidative steam reforming of methane[J]. Journal of Catalysis, 2007, 245(1): 144-155. |
41 | Wang Y Z, Feng X Y, Yang S W, et al. Influence of acidity on the catalytic performance of Ni2P in liquid-phase hydrodeoxygenation of furfural to 2-methylfuran[J]. Journal of Nanoparticle Research, 2020, 22(3): 1-14. |
42 | Chen G Y, Liu J P, Li X P, et al. Investigation on catalytic hydrodeoxygenation of eugenol blend with light fraction in bio-oil over Ni-based catalysts[J]. Renewable Energy, 2020, 157: 456-465. |
43 | 秦浩, 朱天汉, 戴和坤, 等. Ni掺杂磷化钴催化剂的制备及其苯并呋喃加氢脱氧的性能[J]. 现代化工, 2020, 40(11): 194-199. |
Qin H, Zhu T H, Dai H K, et al. Preparation of Ni doped cobalt phosphide catalyst and its performance in catalyzing hydrodeoxidation of benzofuranon[J]. Modern Chemical Industry, 2020, 40(11): 194-199. | |
44 | 张亮, 吴曼, 杨雅, 等. 小球藻热解油在Ni-Cu/ZrO2催化剂上的加氢脱氧[J]. 化工学报, 2014, 65(8): 3004-3011. |
Zhang L, Wu M, Yang Y, et al. Catalytic hydrodeoxygenation of fast pyrolysis bio-oil of chlorella over Ni-Cu/ZrO2 catalyst[J]. CIESC Journal, 2014, 65(8): 3004-3011. | |
45 | Wang P Y, Jing Y X, Guo Y, et al. Highly efficient alloyed NiCu/Nb2O5 catalyst for the hydrodeoxygenation of biofuel precursors into liquid alkanes[J]. Catalysis Science & Technology, 2020, 10(13): 4256-4263. |
[1] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[5] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[6] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[7] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[8] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[9] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[10] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[11] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[12] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[13] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||