化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3306-3315.DOI: 10.11949/0438-1157.20201735
收稿日期:
2020-12-03
修回日期:
2021-02-25
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
王文龙
作者简介:
孙静(1985—),女,博士,副教授,基金资助:
SUN Jing(),DONG Yilin,LI Faqi,LI Wenxiang,MA Xiaoling,WANG Wenlong()
Received:
2020-12-03
Revised:
2021-02-25
Online:
2021-06-05
Published:
2021-06-05
Contact:
WANG Wenlong
摘要:
利用水热法合成Co3O4/USY复合材料,研究其对有机污染物甲苯的吸附和催化氧化特性,同时结合微波对Co3O4的精准加热特性,考察不同负载量Co3O4/USY在微波作用下的升温特性及催化甲苯氧化降解特性。结果表明,通过水热反应,Co3O4在USY表面形成多孔蜂窝状结构;负载Co3O4后的USY保持较高的吸附容量,Co3O4/USY-1.5m室温下的吸附容量为85 mg/g;Co3O4/USY在干、湿两种状态下均在325℃表现出优良的催化氧化特性、CO2选择性和稳定性;Co3O4/USY能够与微波高效耦合,快速升温启动其催化作用,控制反应温度为250℃,发现微波诱导甲苯催化氧化过程的CO2选择性优于常规催化,表明所制备Co3O4/USY复合材料具备吸附甲苯并进行微波快速再生协同有机污染物高效催化氧化降解的可行性。
中图分类号:
孙静, 董一霖, 李法齐, 李文翔, 马晓玲, 王文龙. Co3O4改性USY分子筛吸附和催化氧化甲苯特性研究[J]. 化工学报, 2021, 72(6): 3306-3315.
SUN Jing, DONG Yilin, LI Faqi, LI Wenxiang, MA Xiaoling, WANG Wenlong. Study on adsorption and catalytic oxidation characteristics of toluene on Co3O4 modified USY molecular sieve[J]. CIESC Journal, 2021, 72(6): 3306-3315.
图3 USY(a)、Co3O4/USY-1.5m(b)、Co3O4/USY-2m(c)及Co3O4/USY-3m(d)的SEM图
Fig.3 SEM images of USY (a), Co3O4/USY-1.5m (b), Co3O4/USY-2m (c) and Co3O4/USY-3m(d)
材料 | 总比表面积/(m2/g) | 微孔表面积/(m2/g) | 外表面积/(m2/g) | 总孔容/(cm3/g) | 微孔孔容/(cm3/g) | 介孔孔容/(cm3/g) | 平均孔径/nm |
---|---|---|---|---|---|---|---|
USY | 828 | 732 | 96 | 0.44 | 0.28 | 0.16 | 1.36 |
Co3O4/USY-1.5m | 584 | 359 | 226 | 0.56 | 0.17 | 0.39 | 2.27 |
Co3O4/USY-2m | 524 | 260 | 264 | 0.62 | 0.11 | 0.51 | 2.64 |
Co3O4/USY-3m | 449 | 265 | 184 | 0.54 | 0.11 | 0.43 | 2.76 |
表1 USY和Co3O4/USY复合材料的BET分析
Table 1 BET analysis of USY and Co3O4/USY composite materials
材料 | 总比表面积/(m2/g) | 微孔表面积/(m2/g) | 外表面积/(m2/g) | 总孔容/(cm3/g) | 微孔孔容/(cm3/g) | 介孔孔容/(cm3/g) | 平均孔径/nm |
---|---|---|---|---|---|---|---|
USY | 828 | 732 | 96 | 0.44 | 0.28 | 0.16 | 1.36 |
Co3O4/USY-1.5m | 584 | 359 | 226 | 0.56 | 0.17 | 0.39 | 2.27 |
Co3O4/USY-2m | 524 | 260 | 264 | 0.62 | 0.11 | 0.51 | 2.64 |
Co3O4/USY-3m | 449 | 265 | 184 | 0.54 | 0.11 | 0.43 | 2.76 |
图7 Co3O4/USY-1.5m在干态(a)及不同湿度(b)条件下催化甲苯稳定性
Fig.7 Co3O4/USY-1.5m catalytic stability for toluene oxidation under dry state (a) and different humidity conditions(b)
图9 常规加热(a)和微波加热(b)250℃条件下催化甲苯的对比特性(N表示常规催化;M表示微波催化)
Fig.9 Comparison of catalytic toluene under conventional heating (a) and microwave heating conditions (b) at 250℃
1 | 李红, 彭良, 毕方, 等. 我国PM2.5与臭氧污染协同控制策略研究[J]. 环境科学研究, 2019, 32(10): 1763-1778. |
Li H, Peng L, Bi F, et al. Strategy of coordinated control of PM2.5 and ozone in China[J]. Research of Environmental Sciences, 2019, 32(10): 1763-1778. | |
2 | 中华人民共和国生态环境部. 关于印发«2020年挥发性有机物治理攻坚方案»的通知[EB/OL]. [2020-06-24]. . |
Ministry of Ecology and Environment, PRC. Notice on issuing the Tackling Plan for the Treatment of Volatile Organic Compounds in 2020[EB/OL]. [2020-06-24]. . | |
3 | 刘伟, 李立清, 姚小龙, 等. 活性炭孔隙结构在其甲苯吸附中的作用[J]. 环境工程学报, 2012, 6(9): 3210-3218. |
Liu W, Li L Q, Yao X L, et al. Pore structure effects on activated carbon adsorption behavior for toluene[J]. Chinese Journal of Environmental Engineering, 2012, 6(9): 3210-3218. | |
4 | Lv Y, Sun J, Yu G Q, et al. Hydrophobic design of adsorbent for VOC removal in humid environment and quick regeneration by microwave[J]. Microporous and Mesoporous Materials, 2020, 294: 109869. |
5 | Qie Z P, Zhang Z K, Sun F, et al. Effect of pore hierarchy and pore size on the combined adsorption of SO2 and toluene in activated coke[J]. Fuel, 2019, 257: 116090. |
6 | Li R N, Xue T S, Li Z, et al. Hierarchical structure ZSM-5/SBA-15 composite with improved hydrophobicity for adsorption-desorption behavior of toluene[J]. Chemical Engineering Journal, 2020, 392: 124861. |
7 | 王敏, 翁艺斌, 陈进富, 等. 吸附法治理工业源挥发性有机物的研究进展[J]. 现代化工, 2020, 40(10): 15-19, 25. |
Wang M, Weng Y B, Chen J F, et al. Research progress on treatment of industrial sectors-based VOCs by adsorption[J]. Modern Chemical Industry, 2020, 40(10): 15-19, 25. | |
8 | 吴桐, 周玉香, 王芳, 等. 燃烧法用于VOCs末端治理的研究进展[J]. 山东化工, 2020, 49(4): 80-81, 84. |
Wu T, Zhou Y X, Wang F, et al. Research progress of combustion method in terminal treatment for volatile organic compounds[J]. Shandong Chemical Industry, 2020, 49(4): 80-81, 84. | |
9 | Liu G Z, Tian Y J, Zhang B F, et al. Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation[J]. Journal of Hazardous Materials, 2019, 367: 568-576. |
10 | He C, Yu Y K, Shen Q, et al. Catalytic behavior and synergistic effect of nanostructured mesoporous CuO-MnOx-CeO2 catalysts for chlorobenzene destruction[J]. Applied Surface Science, 2014, 297: 59-69. |
11 | Zang M, Zhao C C, Wang Y Q, et al. A review of recent advances in catalytic combustion of VOCs on perovskite-type catalysts[J]. Journal of Saudi Chemical Society, 2019, 23(6): 645-654. |
12 | Pan K L, Pan G T, Chong S, et al. Removal of VOCs from gas streams with double perovskite-type catalysts[J]. Journal of Environmental Sciences, 2018, 69: 205-216. |
13 | Levasseur B, Kaliaguine S. Effects of iron and cerium in La1-yCeyCo1-xFexO3 perovskites as catalysts for VOC oxidation[J]. Applied Catalysis B: Environmental, 2009, 88(3/4): 305-314. |
14 | 崔维怡, 惠继星, 谭乃迪. 非贵金属催化剂催化氧化甲醛的研究进展[J]. 化工进展, 2018, 37(11): 4286-4293. |
Cui W Y, Hui J X, Tan N D. Research progress on catalytic oxidation of formaldehyde over non-noble metal catalysts[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4286-4293. | |
15 | 冯爱虎, 于洋, 于云, 等. 沸石分子筛及其负载型催化剂去除VOCs研究进展[J]. 化学学报, 2018, 76(10): 757-773. |
Feng A H, Yu Y, Yu Y, et al. Recent progress in the removal of volatile organic compounds by zeolite and its supported catalysts[J]. Acta Chimica Sinica, 2018, 76(10): 757-773. | |
16 | 张兴, 裴文波, 侯志全, 等. 多孔复合金属氧化物的制备及其在消除挥发性有机物中的应用[J]. 工业催化, 2020, 28(4): 39-51. |
Zhang X, Pei W B, Hou Z Q, et al. Preparation of porous mixed metal oxides and their catalytic applications in the removal of volatile organic compounds[J]. Industrial Catalysis, 2020, 28(4): 39-51. | |
17 | 戴洪兴, 侯志全, 张兴, 等. 规整形貌和多孔催化剂对挥发性有机物氧化的催化性能[J]. 北京工业大学学报, 2019, 45(11): 1095-1114. |
Dai H X, Hou Z Q, Zhang X, et al. Catalytic performance of regularly morphological and porous catalysts for the oxidation of volatile organic compounds[J]. Journal of Beijing University of Technology, 2019, 45(11): 1095-1114. | |
18 | Liu W, Liu R, Zhang H Y, et al. Fabrication of Co3O4 nanospheres and their catalytic performances for toluene oxidation: The distinct effects of morphology and oxygen species[J]. Applied Catalysis A: General, 2020, 597: 117539. |
19 | Xu W C, Xiao K B, Lai S F, et al. Designing a dumbbell-brush-type Co3O4 for efficient catalytic toluene oxidation[J]. Catalysis Communications, 2020, 140: 106005. |
20 | Wang B D, Gan F L, de Dai Z, et al. Air oxidation coupling NH3 treatment of biomass derived hierarchical porous biochar for enhanced toluene removal[J]. Journal of Hazardous Materials, 2021, 403: 123995. |
21 | 黄心远. 酸性分子筛催化的有机重排反应研究[D]. 上海: 华东师范大学, 2020. |
Huang X Y. Acidic molecular sieves catalyzed rearrangement reactions[D]. Shanghai: East China Normal University, 2020. | |
22 | Shi Y J, Li Z M, Wang J L, et al. Synergistic effect of Pt/Ce and USY zeolite in Pt-based catalysts with high activity for VOCs degradation[J]. Applied Catalysis B: Environmental, 2021, 286: 119936. |
23 | 高瑞忠, 赵红娟, 高雄厚, 等. USY分子筛的改性及应用进展[J]. 工业催化, 2017, 25(11): 8-12. |
Gao R Z, Zhao H J, Gao X H, et al. Progress in modification and application of USY zeolites[J]. Industrial Catalysis, 2017, 25(11): 8-12. | |
24 | Huang Q Q, Xue X M, Zhou R X. Catalytic behavior and durability of CeO2 or/and CuO modified USY zeolite catalysts for decomposition of chlorinated volatile organic compounds[J]. Journal of Molecular Catalysis A: Chemical, 2011, 344(1/2): 74-82. |
25 | Huang Q Q, Meng Z H, Zhou R X. The effect of synergy between Cr2O3-CeO2 and USY zeolite on the catalytic performance and durability of chromium and cerium modified USY catalysts for decomposition of chlorinated volatile organic compounds[J]. Applied Catalysis B: Environmental, 2012, 115/116: 179-189. |
26 | 刘秉国, 彭金辉, 张利波, 等. 碱式碳酸钴在微波场中的吸波特性及升温行为研究[J]. 无机盐工业, 2010, 42(3): 11-13, 16. |
Liu B G, Peng J H, Zhang L B, et al. Study on microwave-absorbing characteristics and temperature rise behavior of basic cobalt carbonate in microwave fields[J]. Inorganic Chemicals Industry, 2010, 42(3): 11-13, 16. | |
27 | 刘秉国, 彭金辉, 张利波, 等. 草酸钴在微波场中的吸波特性及升温行为研究[J]. 化工科技, 2010, 18(2): 1-4. |
Liu B G, Peng J H, Zhang L B, et al. Study on microwave-absorbing characteristics and temperature rise behavior of cobalt oxalate in microwave fields[J]. Science & Technology in Chemical Industry, 2010, 18(2): 1-4. | |
28 | 吕昱亭. 基于分子筛改性的VOCs吸附和催化氧化试验研究[D]. 济南: 山东大学, 2020. |
Lyu Y T. Experimental research on VOCs adsorption and catalytic oxidation based on modified molecular sieve[D]. Jinan: Shandong University, 2020. | |
29 | 宁轲, 卜龙利, 刘双, 等. 整体式催化剂活性组分负载策略及微波催化燃烧甲苯特性[J]. 燃料化学学报, 2020, 48(9): 1140-1152. |
Ning K, Bo L L Liu S, et al. Loading strategy for the active components of monolithic catalyst and its influences on the microwave enhanced catalytic combustion of toluene[J]. Journal of Fuel Chemistry and Technology, 2020, 48(9): 1140-1152. | |
30 | Zhang F S, Song Z L, Zhu J Z, et al. Factors influencing CH4-CO2 reforming reaction over Fe catalyst supported on foam ceramics under microwave irradiation[J]. International Journal of Hydrogen Energy, 2018, 43(20): 9495-9502. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 吴雷, 刘姣, 李长聪, 周军, 叶干, 刘田田, 朱瑞玉, 张秋利, 宋永辉. 低阶粉煤催化微波热解制备含碳纳米管的高附加值改性兰炭末[J]. 化工学报, 2023, 74(9): 3956-3967. |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[5] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[6] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[7] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[8] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[9] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[10] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[11] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[12] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[13] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[14] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[15] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||